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Dynamics, Thermodynamics, and Time Asymmetry
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There are two schools, or lines, of thought which attempt to unify the apparently
divergent laws of dynamics and thermodynamics and to explain the observed
time asymmetry of the universe and most of its subsystems in spite of the fact
that these systems are driven by time-symmetric evolution equations. They will
be called the coarse-graining and the extended dynamics schools (even if these
names only partially describe their philosophy). The coarse-graining school
obtains time asymmetry via a projection of the state space onto a space of
ª relevantº states. The corresponding projection of the primitive reversible
evolution laws yields effective irreversible evolution laws for the relevant states.
Extended dynamics always uses the same primitive reversible evolution laws.
But these laws (in adequate extensions of the usual spaces where they are
formulated) have a set of solutions S that can be decomposed into two subsets
S+ and S 2 of time-asymmetr ic solutions. Time asymmetry is established by
choosing one of these two sets as the arena in which to formulate the theory.
This paper explains in the simplest self-contained and unbiased way the main
characteristics of both schools and points out the advantages and disadvantages
of each, in such a way as to make explicit the debate between the schools. Some
cosmological features of the theory are also considered, mainly the problem of
the low-entropy initial state of the universe

1. INTRODUCTION

In this paper we will study and try to solve two long-standing problems

of theoretical physics.

1.1. The Problem of Time Asymmetry

The puzzle of the existence of the arrow of time or, in other words, the

time asymmetry of the universe can be stated by asking two questions: (i)
How can the universe be time-asymmetric if all the relevant physical laws
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are time symmetric? (ii) Why do all arrows of time point in the same direction?
In fact, the universe has several time asymmetries, corresponding to the

various arrows of time (thermodynamic, electromagnetic, psychological, etc.),
whereas the main laws of nature are time-symmetric; as usual, we will neglect

the weak interaction laws, since it is very difficult to imagine a mechanism

whereby they could explain the time asymmetry of the universe (Sachs,

1987). In this paper we would like to answer these questions by taking an

appropriate mathematical formalism of the problem and using several, both

old and new, well-established ideas (Tolman, 1987; Landau and Lifshitz,
1958; Davies, 1994). Before doing so, however, we must precisely define

two important words: conventional and substantial (Sachs, 1987; Mackey,

1989). In mathematics we are used to working with identical objects, such

as points, the two directions of an axis, the two semicones of a null cone,

etc. In physics there are also identical objects: such as identical particles,

spin directions, etc. Among identical objects there is always a mathematical
transformation that exchanges these objects, but leaves the system unmodi-

fied. If we are forced to refer to identical objects independently, we will say

that we are establishing a conventional difference between them, for example,

when we call 1 and 2 the two directions of an axis, or ª pastº and ª futureº

the two semicones of a null cone. If objects are different, we will say that
there is a substantial difference between them. The problem of the arrow of

time is that, in usual physical theories, past and future are usually only

conventionally different, whereas we have the impression that they are in

fact substantially different; events in the past have already happened, future

events are yet to happen. In theories endowed with time-symmetric evolution

equations, such as those with which we will be dealing, it is quite impossible to
find time substantial asymmetry using rigorous mathematical manipulations.

Normally, however, one can find within these theories, as we shall see, two

identical mathematical structures, one related with the past and one with the

future (e.g., two subspaces of the space of solutions of the theory). Neverthe-

less, if we study a closed system as the universe, these structures are only

conventionally different, because they are related to each other by a time
inversion. Within these structures, however, the past is substantially different

from the future. The particular choice of structure is physically immaterial,

since time inversion exchanges them, leaving the universe unchanged. There-

fore to create an arrow of time we just conventionally choose one of the

structures. This choice is irrelevant, in the same way that it is irrelevant to

choose one face of a die if all faces are marked with the same number. But
when we have chosen one of the structures, a substantial difference is also

created between past and future within it, and an arrow of time will have

been established. This is the method we will use to create all the arrows of time,

both in the coarse and the extended dynamics cases (ª extended dynamicsº is
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also known as ª intrinsic irreversibility,º ª restricted dynamics,º or even ª fine-

grainingº ) (see Section 6). To show that all the arrows of time point in the

same direction, we will consider the master arrow of time to be the cosmologi-
cal one. We will show that the expansion of the universe creates a thermody-

namic instability within it, in such a way as to make the thermodynamic

arrow of time necessarily point in the same direction as the cosmological

one. We will refer to the literature for the problem of the coincidence of the

other arrows of time with the cosmological master arrow.

1.2. The Problem of the Unification of Dynamics and
Thermodynamics

A specific, but very important, example of the problem of Section 1.1

is the problem of the unification of the time-symmetric dynamical laws with

the time-asymmetric thermodynamic laws. In fact, it is reasonable to expect

that thermodynamic laws could be demonstrated by using either classical or

quantum dynamical laws. However, it seems that this is not possible for
the second law of thermodynamics, which says that entropy increases, in

irreversible evolutions, leading the system to a state of thermodynamic equi-

librium or maximal entropy. This problem can be stated as follows:

(i) Liouville’ s equation is the time-symmetric evolution equation for

classical distribution functions or quantum density matrices r . (ii) This equa-

tion prevents the definition of any functional of r , F( r ) (if it is constructed
only with r and mathematical elements of the Liouville-phase space), such

that F x( r ) . 0 or, in other words, it is impossible, as a consequence of

Liouville’ s theorem, to define a Lyapunov variable, i.e., a growing functional

of r ; for example, the volume or the support of a characteristic distribution

function r is time constant, Gibbs and conditional entropies are time constant
(Lasota and Mackey, 1985), and so on. (iii) Nevertheless, we actually see

that the evolution leads the system to a thermodynamic equilibrium with a

maximal-entropy, stationary state r *.

Therefore the problem is how to combine Liouville’ s theorem with

the obvious fact that everyday physical systems have a tendency to go to

thermodynamic equilibrium. The solution of this problem is based on a
theorem by Mackey and Lasota (1985) (Theorem 4.3.1 below):

Theorem. Let S (t) be an ergodic transformation, with stationary equilib-
rium density r

*
[of the associated Frobenius±Perron operator P (t) in a phase

space of finite r
*
-measure]. Then, if S (t) is r

*
-mixing if and only if P (t) r

is weakly convergent to r
*
,i.e.,

lim
tª̀

(P (t) r | g) 5 ( r
*
| g) (1.2.1)

for all bounded measurable functions g, i.e., if the time evolution in phase



1336 Castagnino and Gunzig

space is S (t), and the corresponding time evolution of the distribution func-

tions is r (t) 5 P (t) r (0), and this evolution is mixing, a chaotic property of

evolutions that we will define below, and if there is an equilibrium density
such that P (t) r

*
5 r

*
, then (1.2.1) can be proved. However,

lim
tª̀

P (t) r Þ r
*

(1.2.2)

and in fact, as we will see, in many cases this limit does not even exist.
Therefore we have a weak limit, but we have no strong limit (i.e., a limit in

the norm). Nevertheless we never see or measure r . What we see and measure

are the mean values of physical quantities O such that

^ O & r 5 ( r | O) (1.2.3)

Thus, what we actually see is that

lim
tª̀

^ O & r 5 ^ O & r * (1.2.4)

In fact, all the mean values of physical quantities go to their equilibrium

values if the evolution of the system is r
*
-mixing. So the solution of the

problem is quite simple: (i) Liouville’ s theorem is embodied in (1.2.2): the

system does not go (strongly) toward the equilibrium state. (ii) Tendency

toward equilibrium is embodied in (1.2.4): the mean values of all the physical

quantities goes to their equilibrium values. Clearly these facts are not contra-

dictory. We will refer to this solution as the nongraining solution. As chaotic-

mixing systems are very common in the universe, the problem is essentially
solved. What remains to be studied are the different techniques to deal

with the detailed calculations. These techniques attempt to find some logical

modification of the theory in order to solve for the missing limit (1.2.2),

which, even if unnecessary from the mathematical standpoint, is the way in

which physicists are used to (or rather, very fond of) thinking, at least up to

now. In fact there are two techniques, as follows.

1.2.1 Coarse-Graining

Let us define an arbitrary, but time-independent, projector:

P 5 | g)(g | , (g | g) 5 1 (1.2.1.1)

and let us define a coarse-graining density function as

r Ä 5 P r 5 | g)(g | r ) (1.2.1.2)

From equation (1.2.1) we have
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lim
tª̀

| g)(g | P (t) r ) 5 | g)(g | r
*
) (1.2.1.3)

and therefore

lim
tª̀

r (tÄ) 5 r Ä
*

(1.2.1.4)

which is the coarse-graining version of equation (1.2.2) and the main equation

of the first technique [of course, the same thing happens with the general
projector P 5 S | gi)(gi | , (gi | gi) 5 d ij ]. It is easy to demonstrate that (1.2.1.4)

is a limit in norm. It is also evident that equation (1.2.1.4) may be obtained

with a quite arbitrary state | g), and that all the philosophy typical of the

coarse-graining technique, namely the definition and consideration of macro-

scopic and microscopic states Misra et al., 1979), is simply an intuitive

justification to give physical meaning to the limit (1.2.1.4). But since this
justification is really unnecessary [because the relevant and important limit

is (1.2.4)], the physical explanation of the entire philosophy of the coarse-

graining technique could be criticized on philosophical grounds Prigogine,

1980). This is the main problem with coarse-graining. It is an arbitrary

method. It works perfectly well, but it is difficult to justify with physical-
philosophical (metaphysical?) arguments. In fact, coarse-graining contains

the misleading statement: we cannot see microscopic states (i.e., r ), but we
can see macroscopic states (i.e., r Ä ). This statement leads to the problem of

finding a unique reasonable definition for these macrostates. This problem

is unresolved and, in our opinion, it will remain so, since | g) is essentially

arbitrary. In addition, if we arbitrarily choose some definition of macrostates,
we are introducing a physical element which is really alien to the system

itself; this definition, therefore, even if natural in particular examples, will

be suspicious from a general point of view. The correct ª no-grainingº state-

ment is: we cannot directly measure microscopic states (i.e., r ), we can only
measure mean values of physical quantities or observables [among them the

projector P 5 | g)(g | , and therefore the arbitrarily defined macroscopic states].
This statement is completely true at the classical and quantum levels Ballen-

tine, 1990) and refers to all physical observables. Then we can rigorously

say that, for example, the two thermodynamic variables ^ p & and ^ v & define

the thermodynamic macrostate of a perfect gas, and so on.

1.2.2. Extended Dynamics

Let + be the Hilbert±Liouville space of the physical states r , and let
+x 5 + be the space of the (anti) linear functionals on +. We may think

that not all O P + 5 +x are physical admissible observables. In fact,

observables are measured by real physical devices that very likely are free

of sophisticated mathematical behavior, e.g., are related with continuous and
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derivable functions and not with discontinuous, nondifferentiable functions,

even if square-integrable. So it is reasonable to suppose that O (x) should be,

e.g., a Schwarz function (we will make this point precise in Section 5). So,
calling the space of physically admissible observables F , we have that

F , + 5 +x (1.2.2.1)

If we consider the dual F x of F we have a Gel’ fand triplet (cf. Section 4.6):

F , + 5 +x , F x (1.2.2.2)

(as we will see in Section 5, if we give to the functions of F some analyticity

properties, we can also consider the time-asymmetry problem within this

framework). We will work with states that belong to F x: for example, r
*

normally belongs to this space. As is well known, we define the functional

A, the sum of the functionals B and C, A 5 B 1 C, as the functional A [g]

5 (A | g) defined by

A [g] 5 (A | g) 5 B [g] 1 C [g] 5 (B | g) 1 (C | g)

for all g P F . The same method is used to define the product of a functional

by a number. Analogously, if we have a sequence of functionals A1, A2, . . .

the limit A 5 limtª̀ A i is defined as the functional such that

A [g] 5 (A | g) 5 lim
tª `

Ai[g] 5 lim
tª `

(Ai | g)

for all g P F . Then, as r and r
*

can be considered as functionals on F ,

equation (1.2.1) reads

lim
tª̀

P (t) r 5 r
*

(1.2.2.3)

and we have found a rigorous ª strongº limit corresponding to equation (1.2.1)

(Gel’ fand and Shilov, 1968). Perhaps the main problem with the extended

dynamics technique is that it is usual to consider the states of F x \+ as

unphysical states, or just effective states, where some characteristics of real
physical states have been neglected (such as Zeno and Khalfin effects).

Nevertheless we can also say that every state which can be used to measure

the mean values of all observables of F is essentially a physical state, and

this is the case with all the states of F x. However, this point is not completely

clear. So neither technique is completely without fault. Nevertheless, since

the real physical problem is solved by the Mackey and Lasota theorem, we
could say that the sins involved are merely venial ones. On the other hand,

each technique has some advantages; (i) Coarse graining works just with one

physical space, +. Also, coarse-graining is unavoidable to calculate global

thermodynamic variables such as temperature or pressure. But (ii) the time



Dynamics, Thermodynamics, and Time Asymmetry 1339

evolution of r (t) can be computed more easily using the extended dynamics

technique, since we have the vectors of space F x that may be used to find

a new spectral expansion for the observables in the problem. Once we know
r (t), we can compute r Ä 5 P r (t), while the direct computation of r Ä (t) using

coarse-graining techniques directly can be more difficult (Hu et al., 1992a).

Since the coarse-graining technique is well known (Gel’ fand and Shilov,

1968; Hu et al., 1992a; Zwanzig, 1961), this paper will be mostly devoted

to studying the new ideas introduce by no-graining and extended dynamics.

The arrangement of this paper is as follows: In Section 2 we describe the
dynamics, both classical and quantum, and define the notions of time symme-

try and reversibility. This section is based on Castagnino et al. (1996). In

Section 3 we deal with thermodynamics, and give the different definitions

of entropy. This and the two following sections are based on Mackey (1989)

and Lasota and Mackey (1985), but we have added the new mathematical

and physical structures which have been studied and which have recently
appeared. In Section 4 we introduce the classical evolution equations and

we study the ergodic, mixing, and, exact transformations. In Section 5 we

find the quantum evolution equations. We study the no-graining and extended

dynamics ideas in models with both discrete and continuous spectra, and we

consider the Friedrichs model, for pure and mixed states. In Section 6 we
study the coarse-graining and the extended dynamics projectors. We also

study the problem of time asymmetry. In Section 7 we review the main

equation of thermodynamics in curved space-time. In Section 8 we consider

the alignments of the arrows of time. This section is mostly based on Tolman

(1987), Davies (1994), and Castagnino et al. (1995). In Section 9 we draw

our conclusions.

2. DYNAMICS

In this section we shall review the formalism that we will use throughout

this work and we will see how the notions of reversibility and time asymmetry
are introduced.

2.1. Classical Formalism

A classical system with N degrees of freedom is characterized by its

Hamiltonian

H 5 H(x) 5 H(qi , pi) (2.1.1)

which is a function of x, the generic point in the 2N-dimensional phase space

X, or a function of the configuration variables qi and the momentum variables

pi (i 5 1, . . . , N ). The system is solved if we compute the functions
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qi 5 qi (t)

pi 5 pi (t)

or

x 5 x (t) (2.1.2)

as solutions of Hamilton’ s equations

dqi

dt
5 - piH

dpi

dt
5 2 - qiH (2.1.3)

satisfying, at time t 5 0, the conditions

qi (0) 5 q 0
i

pi (0) 5 p 0
i (2.1.4)

The solution of the system of differential equations (2.1.3) is the map S (t):
X ª X, defined by

S (t)[x (0)] 5 x (t) (2.1.48)

We also call St 5 S (t), and these St form a group. If A , X is a subset of

the phase space, we can compute the image of A, namely St(A ) 5 B. Then,

if m L is the Lebesgue measure on X, we can formulate the Liouville theorem:

Theorem 2.1.1. If S (t) is the map obtained solving the classical dynamical

evolution and A is a m L-measurable set of X, then

m L(S (t)A ) 5 m L(A ) (2.1.49)

i.e., classically the evolution preserves the ª volumeº in phase space.

Let us now define the notion of reversibility. Experimentally it is impossi-

ble to change the direction of time. The best we can do in order to simulate

a time inversion is to film the motion under study and project the film
backward. Then, if qi 5 qi (t) and pi 5 pi (t) give the real motion, the law of

the fictitious motion obtained by playing the film backward will be qi 5
qi ( 2 t), pi 5 2 pi ( 2 t), where to change t by 2 t is just an easy way to avoid

having to define new initial data (the final ones of the reversed motion). We

can deduce that the time-reversal operator T acts on the configuration variables
and the momentum variables as (Sachs, 1987; Messiah, 1962)

T (qi , pi) 5 (Tqi , Tpi) 5 (qi , 2 pi) (2.1.5)

We can now consider the data (2.1.4) (which we have called ª conditions at
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zero timeº and not ª initial conditionsº in order to avoid any reference to

time, even though we will follow the common usage in other sections) and

compute the reversed data

q rev
i (0) 5 qi (0)

p rev
i (0) 5 2 pi (0) (2.1.6)

With these conditions, ª at zero timeº we can calculate, using equations (2.1.3),

a new real motion that we will call q rev
i (t), p rev

i (t). We will say that the motion

is reversible if

q rev
i (t) 5 qi ( 2 t)

p rev
i (t) 5 2 pi ( 2 t) (2.1.7)

that is, if the motion in the backward film agrees with a real motion with

reversed conditions at zero time (we see that the initial conditions of one

motion are the final ones of the other). Usually H [cf. (2.1.1)] is quadratic

in the pi , so that

TH(qi , pi) 5 H (Tqi , Tpi) 5 H (qi , 2 pi) 5 H (qi , pi) (2.1.8)

In this case we will say that the Hamiltonian is time-symmetric. Then, if we
make a T transformation (2.1.5) on (2.1.3), we find

dqi

dt
5 2 - ( 2 pi)H

2
d ( 2 pi)

dt
5 2 - qrevi H (2.1.9)

and if we now change t by 2 t, we find again (2.1.3) as

dqi

d ( 2 t)
5 - ( 2 pi) H

d ( 2 )pi

d ( 2 t)
5 2 - qi H (2.1.10)

From this equation and (2.1.3) a motion (q rev
i , p rev

i ) with data (2.1.6) must

satisfy (2.1.7). Therefore:

Theorem 2.1.2. A usual Hamiltonian, quadratic in the pi , yields a revers-

ible motion.

The only condition to obtain a reversible motion is (2.1.8), which implies

that the Hamiltonian is time-symmetric. Then reversible motion forms a

group. However, irreversible motion does not form a group, since their inverse
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does not even exist. Moreover, we will say that the initial conditions are

time-symmetric, with respect to t 5 0, if pi(0) 5 0, or

qi (0) 5 qi (0)

pi (0) 5 2 pi (0) (2.1.11)

Then, if the motion is reversible, we will have

qi (t) 5 qi ( 2 t)

pi (t) 5 2 pi ( 2 t) (2.1.12)

We call this motion time-symmetric with respect to t 5 0, since the

curves qi (t) are symmetric with respect to the vertical axis and the curves

pi (t) are symmetric with respect to the origin of the coordinate system, as in

Fig. 1. Therefore:

Theorem 2.1.3. If the motion is reversible and the condition at t 5 0 is
time-symmetric, then the motion is time-symmetric with respect to t 5 0.

If all the motion were time-symmetric with respect to t 5 0, then it

would be impossible to define any arrow of time at t 5 0, since past and

future would look exactly the same in this instant of time.

2.2. Quantum Formalism

The quantum wave function for the same system treated in Section

2.1 reads

Fig. 1. The q (t) and p (t) functions for time-symmetric solutions, with respect to t 5 0.
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F (qi , t) 5 ^ qi | F (t) & (2.2.1)

This function belongs to a Hilbert space * 5 L 2. This implies that if we

introduce the inner product

( F , C ) 5 # F * C d Nq (2.2.18)

with ( F , F ) , ` , usually normalized as ( F , F ) 5 1, it satisfies the SchroÈ d-
inger equation

i
- F (qi , t)

- t
5 H F (qi , t) (2.2.2)

from which we can find the time evolution of the wave function F (qi , t) by

imposing conditions at zero time

F (qi , 0) 5 F 0(qi) (2.2.3)

Then

F (qi , t) 5 e 2 iHtF (qi , 0) 5 u (t) F 0(qi) (2.3.38)

Since we are now working in the configuration representation, in which the

position and momentum operators are

qÃi 5 qi

pÃi 5 2 i - qi, (2.2.4)

the quantum version of (2.1.5) is

T F (qi , t) 5 F *(qi , t) (2.2.5)

For, if

^ pÃi & F 5 # F *(q)( 2 i - qi) F (q) dq, ^ qi & F 5 # F *(q)qi F (q) dqi

then

^ pÃi & F * 5 # F (q)( 2 i - qi) F *(q) dq 5 2 ^ pÃi & F , ^ qÃi & F * 5 ^ qÃi & F

(for more details see Messiah, 1962). In this case the wave function of the

inverted motion will have as zero time data

F rev(qi , 0) 5 F *(qi , 0) 5 F 0*(qi) (2.2.6)

and the motion will be reversible if
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F rev(qi , t) 5 F *(qi , 2 t) (2.2.7)

which is the quantum version of equations (2.1.7). If H is a Hamiltonian

quadratic in p, it is easy to see that H is real (or time-symmetric), namely

H 5 H* (2.2.8)

We can thus formulate:

Theorem 2.2.1. If the Hamiltonian is real, the corresponding evolution

is reversible.

Proof. From (2.2.6) and (2.2.8) we can obtain (2.2.7), since

F rev(t) 5 e 2 iHtF rev(0) 5 e 2 iHtF *(0) 5 (e iHtF (0))* 5 F *( 2 t)

(2.2.9)

where we have omitted the variables qi. Then, as in the classical case, a usual
Hamiltonian yields a reversible motion.

We can also directly show that (2.2.2) is t-invariant, but the proof above

is preferable because the role played by the condition at zero time can be

seen explicitly. As in the classical case, reversible motion forms a group,

since u 2 1(t) 5 u ( 2 t) is a real motion, which is not the case for irreversible

motion, in which the reversed motion is again not real. If u (t1)u (t2) 5 u (t1 1
t2) for t1, t2, $ 0 only (and there is a unit), we will say that these motions

form a semigroup. This is the case for irreversible motions. Let us now repeat

all of this formalism, which so far we have introduced in the configuration

representation, in an abstract way. The state of the system is defined by the

ket | F (t) & which belongs to the Hilbert space of states *, and satisfies the

SchroÈ dinger equation

i
d

dt
| F (t) & 5 H | F (t) & (2.2.10)

The inner product is symbolized as ^ F | C & 5 ( F , C ), and the normalization

is ^ F | F & 5 1. We can find | F (t) & by solving (2.2.10) with the condition at

zero time

| F (0) & 5 | F 0 & (2.2.11)

This means that

| F (t) & 5 e 2 iHt | F (0) & 5 u (t) | F (0) & (2.2.118)

Then, the T transformation can be defined as (Messiah, 1962; Roman, 1965)

T | F (t) & 5 K | F (t) & 5 | F *(t) & (2.2.12)

which means that we must conjugate the wave function in the configuration
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representation and then go to the generic representation. K is known as the

Wigner operator. More precisely, let ( F (qi , t)) 5 | F (qi , t)) be the coordinates

of the state vector in the configuration representation (wave function) and
| F (t) & the coordinates of the same vector in a generic representation; then

| F (t) & 5 U | F (qi , t)), UU ² 5 1 (2.2.13)

Let K0 be the conjugation operator in the configuration representation

K0 | F (qi , t)) 5 | F *(qi , t)) (2.2.14)

Then

K | F (t) & 5 KU | F (qi , t)) 5 UK0 | F (qi , t)) 5 UK0U
² | F (t) & (2.2.15)

Thus, if K0 is the conjugation in the configuration representation, the Wigner

operator K in a generic representation reads

K 5 UK0U
² (2.2.16)

It is easy to show that, in the configuration representation, K0 has the follow-

ing properties:
(a) K0 is an antilinear, antiunitary operator, namely (Messia 1962), (a1)

K0( a | 1 & 1 b | 2 & ) 5 a *K0 | 1 & 1 b *K0 | 2 & ; (a2) if | 2 & 5 K0 | 2 & , ^ 1 | 5 ^ 1 | K0, and

AÃ5 K0 AK ²
0, then ^ 1

Ã
| AÃ| 2

Ã
& 5 ^ 1 | A | 2 & *; (a3) ( ^ 1 | K0) | 2 & 5 ^ 1 | (K0 | 2 & )*, i.e.,

parentheses cannot be omitted.

(b) K 2
0 5 1 [at least for spin-zero fields (Messiah, 1962)].

(c)

K0qÃi K
²
0 5 qÃi

K0 pÃi K
²
0 5 2 pÃi

(d) We have

K0cK
²
0 5 c*8 if c P #

Therefore K0 K
²
0 5 1 and K0 iK

²
0 5 2 i. From (2.2.16), it is also easy to show

that K has the same properties. As an exercise we can repeat formulas

(2.2.6)±(2.2.9) in a generic representation. The time reversal is given by
equation (2.2.12). The reverse initial condition is

| F (0)rev & 5 K | F (0) & (2.2.17)

and the condition of reversible motion reads

| F (t)rev & 5 K | F ( 2 t) & (2.2.18)

We shall say that H is real if
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H 5 KHK ² (2.2.19)

and usually H is endowed with this property, because equation (2.2.8) is

satisfied in the configuration basis. Then, from (2.2.17) and (2.2.19) we can
again deduce Theorem 2.2.1, but this time in a generic coordinate system:

| F (t)rev & 5 e 2 iHt| F (0)rev & 5 e 2 iHtK | F (0) &

5 K (K ² e 2 iHtK | F (0) & ) 5 KeiHt| F (0) & 5 K | F ( 2 t) & (2.2.20)

Then, as in the classical case, a usual real Hamiltonian yields a reversible

motion. In general, we will call a ket | 1 & (bra ^ 1 | ) real if

K | 1 & 5 | 1 & or ^ 1 | K ² 5 ^ 1 | , (2.2.21)

and an operator A real if

KAK ² 5 A (2.2.22)

From (2.2.19) we see that a usual Hamiltonian is a real operator. A basis

{ | i & } will be a real basis if all its kets are real:

K | i & 5 | i & (2.2.23)

In a real basis, K is just the conjugation of the coordinates of the vectors, or

of the coordinates of the operators:

K | F & 5 K o
i

ci | i & 5 o
i

c *i | i & (2.2.24)

KAK ² 5 K 1 o ij cij | i & ^ j | 2 K ² 5 o
ij

c *ij | i & ^ j |

Therefore, the configuration basis { | x & } is real. We will say that the conditions

at t 5 0 are time-symmetric if

| F (0) & 5 K | F (0) & (2.2.25)

or in other words | F (0) & is real. Then, if the evolution is reversible, we have

| F ( 2 t) & 5 K | F ( 2 t) & (2.2.26)

and we say that the evolution is time-symmetric with respect to t 5 0. So

we have:

Theorem 2.2.2. If the evolution is reversible and the initial condition is
time-symmetric, the evolution is time-symmetric. Then we can repeat what

we said in the classical case. If all the quantum evolutions were time-symmet-

ric with respect to t 5 0, it would be impossible to define a quantum arrow

of time at t 5 0.
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2.3. Statistical Formalism

We will deal simultaneously with the classical and quantum cases in

order to establish an analogy or unified formalism that we will use below.

Nevertheless, it should be stressed that there is a great difference between

the classical and quantum cases. We will call the classical distribution function
or density (resp., the quantum density matrix) a function (resp., matrix)

endowed with the following properties:

r (qi , pi) $ 0 or r (x) $ 0 (2.3.1)

| r | 5 # X

r (qi , pi) dqi dpi 5 # X

r (x) dx 5 1

where X is the phase space. Distribution functions r belong to an L 1 Hilbert

space called the classical Liouville space (resp., in the quantum mechani-

cal formalism

r 5 r ²

tr( r ) 5 1 (2.3.2)

r a a $ 0

density matrices r belong to a space + 5 * 3 * called the quantum Liouville

space). r satisfies the Liouville equation

i - t r 5 L r (2.3.3)

where

L 5 i {H, ..}PB (2.3.4)

[resp.,

L 5 [H, .,] 5 H 3 1 2 1 3 H (2.3.5)

(cf. equation (2.A.24) for the definition of 3 )]. Therefore the time evolution,

in both classical and quantum cases, is

r (t) 5 e 2 iLt r (0) 5 U (t) r (0) (2.3.58)

The T transformation of a density function is

T r (qi , pi) 5 r 8(qi , pi) 5 r (qi , 2 pi) (2.3.6)

(resp., the T transformation of a density matrix is

T r 5 r 8 5 K r K ² 5 _ r (2.3.68)

where _ 5 K 3 K ² ). From equation (2.3.3), if the Hamiltonian is a usual

time-symmetric one, we have classically
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TL r (qi , pi) 5 Ti{H, r }PB

5 Ti o
i

- qiH - pi r 2 - piH - qi r

5 i o
i
- qiH - 2 piT r 2 - 2 piH - qiT r

5 2 i {H, T r }PB 5 2 LT r (2.3.7)

Therefore, if we T-transform classically equation (2.3.2), we obtain

i - tT r 5 2 LT r (2.3.8)

[resp., if we T-transform the quantum Liouville equation (2.3.2), we obtain,
if the Hamiltonian is a real usual one,

KiK ² - tK r K ² 5 (K 3 K ² L (K ² 3 K )K r K ² (2.3.88)

but KiK ² 5 2 i, and

(K 3 K ² )L (K ² 3 K ) 5 KHK ² 3 1 2 1 3 KHK ² 5 L

so

2 i - tK r K ² 5 LK r K ² (2.3.89)

i.e., the same equation as the classical one (2.3.8)]. In both cases a minus
sign appears. In the reverted solution we must change t by 2 t, namely

T (t) 5 t8 5 2 t (2.3.9)

So we have proved:

Theorem 2.3.1. The Liouville equation remains invariant under T trans-
formations for a usual time-symmetric Hamiltonian.

Thus we have shown the complete isomorphism of the classical and

quantum formalisms. From now on we will mainly use the quantum formal-

ism, since it is the one which is better known to physicists. Let us therefore

review the main properties of the usual Hamiltonian, in a real basis to simplify

the treatment. From the equations of Section 2.2. we have

H 5 H ²

H 5 H* (2.3.10)

H 5 H T

which implies that the Hamiltonian is (I) self-adjoint, because it is an observ-

able; (II) real, because for the usual Hamiltonian the motion is reversible;

and (III) as a consequence, it is also symmetric. r belongs to a set which,
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endowed with the inner product (2.A.1) below, becomes the Liouville±Hilbert

space +. From (2.A.29) and (2.3.10)) we can prove that the Liouvillian has

the following properties in a real basis:

L 5 L ²

L 5 L* (2.3.11)

L 5 2 L a

L 5 2 L T

Then, from (2.3.11) and (2.A.18) we have

(iL) 5 (iL)a (2.3.12)

This property is important since from it we can deduce that the matrix r
remains Hermitian under the time evolution always satisfying the Liouville

equation (2.3.2). In fact, it follows from (2.A.18) that a product of self-

associated commuting operators is also self-associated. Then, (iL) 5 (iL)a

implies (e 2 iLt)a 5 e 2 iLt and r (0) 5 r (0) ² implies e 2 iLt r (0) 5 [e 2 iLt r (0)] ² ,

namely; r (t) 5 r (t) ² . Finally, let us prove in another way that, if the Liouvillian
is real, the evolution is reversible. Based on (2.1.7) and (2.2.7) we define a

reversible motion, in a real basis, as

r rev(t) 5 r *( 2 t) (2.3.13)

where r rev(t) is the motion with reversed condition at zero time:

r rev(0) 5 r *(0) (2.3.14)

Now we can prove:

Theorem 2.3.2. If the Liouvillian is real, the evolution is reversible.

Proof. With the same reasoning as for (2.2.9) we have

r rev(t) 5 e 2 iLt r rev(0) 5 e 2 iLt r *(0), 5 [e iLt r (0)]* 5 r *( 2 t)

(2.3.15)

which shows that a motion with a real Liouvillian is reversible. QED

In a generic basis, (2.3.11)±to (2.3.15) read as follows: The Liouvillian

is real or time symmetric if

_L_ ² 5 L (2.3.16)

The evolution is time-symmetric if

r rev(t) 5 K r ( 2 t)K ² 5 _ r ( 2 t) (2.3.17)

The conditions at time t 5 0 are time-symmetric if
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r rev(0) 5 S r (0)K ² 5 _ r (0) (2.3.18)

A real Liouvillian and time-symmetric conditions at t 5 0 yield a time-
symmetric evolution since

r rev(t) 5 e 2 iLt r rev(0) 5 e 2 iLtK r (0)K ² (2.3.19)

K [e iLt r (0)]K ² 5 K r ( 2 t)K ²

The condition at t 5 0 will be called time-symmetric if

r (0) 5 K r (0)K ² 5 _ r (0) (2.3.20)

Then, if the evolution is irreversible, we have

r ( 2 t) 5 _ r (t) (2.3.21)

and we find that the whole evolution is time-symmetric and we can repeat

the procedure described for the previous cases. So we have:

Theorem 2.3.3. If the evolution is reversible and the condition at t 5 0

is time-symmetric the evolution is time-symmetric with respect to t 5 0.

Proof. If the Liouvillian satisfies (2.3.16) and the condition at t 5 0

satisfies (2.3.20), all the evolution is time-symmetric, since

_ r (t) 5 _(e 2 iLt r (0)) 5 e i_L_ ² t _ r (0) 5 e iLt r (0) 5 r ( 2 t)

(2.3.22)

Therefore the motion is time-symmetric if L is real and the condition at time

t 5 0 is time-symmetric. QED

2.4. Appendix 2A. Mathematical Theory of Superspace and
Superoperators

We now have a short mathematical interlude, to define the notions of

superspace and superoperators (Prigogine et al., 1980).

2.4.1. The Quantum Case

Let us consider a Hilbert space * and the space + 5 * 3 * of matrices

on *, i.e., the Liouville±Hilbert space. Matrices will be symbolized by Greek

lower case letters a , b , . . . , r with coordinates a ij, b ij, . . . , r ij. We will call

the linear space of matrices the superspace + and the matrices supervectors.
Let us define an inner product in the superspace +:

a ? b 5 ( a | b ) 5 tr( a ² b ) 5 o
ij

a *ij b ij (2.A.1)

Using this inner product, + becomes an L 2 Hilbert space. The norm of a

supervector is thus
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| a | 5 a ? a 5 o
ij

| a ij | 2 $ 0 (2.A.2)

We will consider the linear operators in superspace, which we will call

superoperators , and which will be represented by capital Latin letters A, B,

. . . , L, with coordinates Aij,kl, Bij,kl. Superoperators act on matrices as

A a 5 b

a A 5 b (2.A.3)

We will use for these two equations the following rule for indices:

o
kl

Aij, kl a kl 5 b ij,

o
kl

a T
lk Alk, ji 5 b T

ji (2.A.4)

In the first equation we have used the usual multiplication ª row by columnº

and a and b are considered as column vectors. In the second, we have

transposed a and b since in these cases they are considered as row vectors.
Since the superoperators have four indices, we can define more operations

defining transposed and adjoints than for ordinary two-index matrices. So,

for a superoperator A, we define the following:

(a) The transpose A T is the superoperator such that

A a 5 a A T (2.A.5)

for all a P +. Then,

Aij, kl a kl 5 a kl A T
lk, ji (2.A.6)

so

Aij, kl 5 A T
lk, ji (2.A.7)

Of course,

(AT )T 5 A

(A1A2)
T 5 AT

2 A1 (2.A.8)

and A is symmetric (antisymmetric) if

A 5 A T (A 5 2 A T ) (2.A.9)

The adjoint A ² is the superoperator such that

A a 5 ( a ² A ² ) ² (2.A.10)

for all a P +. Then,
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Aij, kl a kl 5 ( a *lkA
²
lk, ji)

² 5 a lk(A
²
lk, ij)* (2.A.11)

so

A *ij, kl 5 A ²
kl, ij (2.A.12)

Of course,

(A ² ) ² 5 A

(A1 A2)
² 5 (A

²
2A

²
1 (2.A.13)

and A is Hermitian (anti-Hermitian) if

A 5 A ² (A 5 2 A ² (2.A.14)

The associated superoperator A a is the superoperator such that

A a 5 (A a a ² ) ² (2.A.15)

for all a P +. Then,

Aij, kl a kl 5 (A a
ij, kl a

²
kl)

² 5 (Aa
ji, kl a *lk)² 5 (A a *ji, kl a lk) (2.A.16)

so

A *ij, kl 5 A a
ji, lk (2.A.17)

Of course,

(A a)a 5 A

(A1A2)
a 5 A a

1A
a
2 (2.A.18)

and an operator is adjoint-symmetric (or self-associated ) if

A 5 A a (2.A.19)

An adjoint-symmetric operator acting on a Hermitian matrix gives another

Hermitian matrix. For, if

a 5 a ² , A 5 A a (2.A.20)

then from equation (2.A.15) we have

A a 5 (A a ) ² (2.A.21)

Putting everything together, we have

Aij, kl 5 A T
lk, ji 5 (A

²
kl, ij)* 5 (A a

ji, lk)* (2.A.22)

and therefore
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A aT 5 A ² (2.A.23)

Let us now define a superoperator as a product of two operators, A 5 a 3
b , as

A g 5 a g b , ; g (2.A.24)

or, equivalently,

o
kl

Aij, kl g kl 5 o
kl

a ik g kl b lj

that is,

Aij, kl 5 a ik b lj (2.A.25)

Then,

o
kl

g kl A lk, ji 5 o
kl

g kl a lj b ik 5 o
kl

b ik g kl a lj (2.A.26)

and, from (2.A.4),

g A 5 b g a (2.A.27)

Therefore, we have from (2.A.24) and (2.A.27),

( a 3 b ) g 5 a g b

g ( a 3 b ) 5 b g a (2.A.28)

The choice of the index position in equation (2.A.4) was made in order to

obtain these simple multiplication rules. It is easy to prove that

( a 3 b )T 5 b 3 a

( a 3 b ) ² 5 a ² 3 b ² (2.A.29)

( a 3 b ) a 5 b ² 3 a ²

The product 3 can be used to define the time inversion of matrices, since a

time-inverted matrix is [equation (2.2.22)]

T r 5 K r K ² 5 (K 3 K ² ) r 5 _ r (2.A.30)

From this equation we can deduce the time inversion rule of superopera-

tors, namely,

TA 5 (K 3 K ² )A (K 3 K ² ) ² 5 _A_ ² (2.A.31)

Since [see equation (2.A.29)]

(K 3 K ² ) ² 5 K ² 3 K

we have the alternative expression
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TA 5 (K 3 K ² )A (K ² 3 K ) (2.A.32)

We can also compute ( a 3 b )( g 3 d ):

o
kl

( a 3 b )ij,kl( g 3 d )kl, nm

5 o
kl

a ik b lj g kn d ml 5 o
kl

a ikg kn d ml b lj

5 ( a g 3 d b )ij, nm (2.A.33)

giving

( a 3 b )( g 3 d ) 5 ( a g 3 d b ) (2.A.34)

2.4.2. Classical Case

As we have seen, the quantum Liouville space is transformed in an L 2

Hilbert space by the inner product (2.A.1). In the same way it is convenient

to define an inner product in the classical Liouville space +, namely

( r | s ) 5 # X

r *(x) s (x) dx (2.A.35)

Using this inner product and Wigner functions (Section 6.7) the classical +
becomes also an L 2 Hilbert space, and the classical equivalent of the quantum
equation in the previous subsection can be found. Also, we can use the

Wigner function integral of Section 6.7 to make this equivalence explicit.

3. THERMODYNAMICS

3.1. Classification of the Different Versions of the Second Law

The first law of thermodynamics is simply the conservation of energy.
There is no conflict between dynamics and thermodynamics for this law. The

problem is to derive the second law of thermodynamics based on dynamical

considerations. The second law is expressed in many forms by different

authors, and so we shall begin our research by making a classification of

these forms. Let S (t) denote the thermodynamic entropy of a closed system

(i) We denote a first-order second law by the statement

S (t) $ S (t8) (3.1.1)

if t $ t8 thus, according to this form, the entropy cannot decrease.

(ii) A stronger assertion would be a second-order second law: Equation

(3.1.1) is satisfied and also
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lim
tª `

S (t) 5 S
*

(3.1.2)

In this case we assert that the system’ s entropy converges to a steady-state

value S
*
, which may not be unique; e.g., it can be the entropy of a metastable

state. Different preparations of the system could yield different final metasta-

ble states.

(iii) The final and strongest, or third-order, form of the second law is
that (3.1.1) and (3.1.2) are satisfied, but also the limit (3.1.2) is unique. In

this case the entropy of the system evolves to a unique maximum, irrespective

of how it was prepared. We will find these different forms of the second

law below.

3.2. Dynamics and Densities

In order to be as general as possible, we shall consider more generic

systems than the ones of Section 2. This is not done just for the sake of

mathematical generality, but also because we will later be forced, by the

problems which we will be tackling, to consider such a system. So let us

consider a system operating in a phase space X with an evolution law St

more general than (2.1.3.), i.e., a mapping St: X ® X that changes the point

x of X as t changes. X may have finite dimension d or infinite dimension,

and t can be discrete or continuous. We will consider only ª autonomousº

processes, i.e., such that St(St8(x)) 5 S t 1 t8(x), S0(x) 5 x. Thus the mapping S
can form either a group of transformations when t, t8 P R (or Z ) (e.g., the
evolutions with time-symmetric Hamiltonian or Liouvillian of Section 2) or

a semigroup if t, t8 P R + (or N ). In the two last cases (R +, N ) an equation

such as (2.1.7) does not exist and the evolution is necessarily irreversible.

For every point x0 the successive points St(x0) form a system trajectory. To

study an infinite number of initial points, or an infinite number of trajectories,

we introduce the density functions r (x) P L 1 (X ), which obey

# X

| r (x) | dx , ` (3.2.1)

such that

r (x) $ 0, | r (x)| 5 1 (3.2.2)

where

| r (x)| 5 # X

| r (x) | dx (3.2.3)

is the L 1-norm of r . We postulate that a thermodynamic system is a system
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which has, at any given time, states distributed throughout the phase space

X, and the distribution of these states is characterized by the density function

r (x). We will define the r measure m r (A ) of the set A , X as

m r (A ) 5 # A

r (x) dx (3.2.4)

The Lebesgue (nonnormalized usual) measure of a set A will be denoted

m Å L(A ). The uniform density will be

r L(x) 5
1

r Å L(X )
(3.2.5)

and therefore the Lebesgue normalized measure is m r L (X ) 5 m L (X ) 5 1.
We always write m Å L (dx) 5 dx. Finally, X can be either Gibbs phase space G
or Boltzmann phase space m (Lasota and Mackey, 1985).

3.3. Gibbs Entropy

This entropy is defined as

H ( r ) 5 2 # X

r (x) log r (x) dx (3.3.1)

It is an additive quantity, by which we mean that the Gibbs entropy of a

system formed by two subsystems is the sum of the two corresponding

entropies. Then it is called an extensive quantity. The Gibbs entropy can be

written as

H( f ) 5 # X

h ( r (x)) dx. (3.3.2)

where the h ( r ) function is defined as

h ( r ) 5 2 r log r for r . 0 and h (0) 5 0 (3.3.3)

and it is endowed with the property

h ( r ) # ( r 2 s ) h 8( s ) 1 h ( s ) (3.3.4)

Combining these last two formulas, we can prove the Gibbs inequality:

r 2 r log r # s 2 r log s for r , s . 0 (3.3.5)

If r and s are two normalized density functions, integrating the last equation,

we have
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2 # X

r (x) log r (x) dx # 2 # X

r (x) log s (x) dx (3.3.6)

Only when r 5 s does the equality hold in (3.3.4.)±(3.3.6)

3.4. Microcanonical and Canonical Ensembles

Let us consider a space X with a finite Lebesgue measure: m Å L(X ) , ` .

Then the only density that will make the Gibbs entropy maximal is the

uniform density of equation (3.2.5). Precisely we have:

Theorem 3.4.1. When m Å L(X ) , ` , the density that maximizes the Gibbs

entropy is the uniform density, r L(x) [cf. equation (3.2.5)]. For any other

density r Þ r L ,H ( r ) , H ( r L).

Proof. Choosing an arbitrary density r , from (3.3.6) we have

H ( r ) # 2 # X r (x) log s (x) dx (3.4.1)

However, if s (x) 5 1/ m Å L(X ), the integrated Gibbs inequality (3.3.6.) gives

H( r ) # 2 log F 1

m Å L(X ) G (3.4.2)

since r is normalized to one. The equality holds if r 5 r L , but the entropy

corresponding to r L is

H( r L) 5 2 log F 1

r Å L(X ) G (3.4.3)

therefore H( r ) # H( r L) for any density r and H( r ) , H( r L) for r Þ r L.
Clearly, if X is normalized so that m Å L(X ) 5 1, then H( r ) # 0. QED

The uniform density is also called the density of a microcanonical

ensemble, and, as we can show, to define it we do not need to use any particular

property of the thermodynamic system under consideration. Another, even

more interesting, theorem is the following:

Theorem 3.4.2. Assume that there exists a nonnegative measurable func-
tion a (x) as well as an average or expectation mean value ^ a & r of that function

over the entire X, weighted by the density r :

^ a & r 5 # X

a (x) r (x)dx (3.4.4)

Then the maximum of the Gibbs entropy H( r ) subject to the constraint ^ a & r

5 const occurs for the density



1358 Castagnino and Gunzig

r *(x) 5 Z 2 1e 2 n a (x) (3.4.5)

where

Z 5 # X

e 2 n a (x) dx (3.4.6)

and n is implicitly defined by the normalization condition

^ a & r 5 Z 2 1 # X

a (x)e 2 n a (x) dx (3.4.7)

Proof. The proof again uses the integrated Gibbs equality (3.3.6) so

H( r ) # 2 # X

r (x) log r
*
(x) dx 5 2 # X

r (x)[ 2 log Z 2 n a (x)] dx

5 log Z 1 n # X

r (x) a (x) dx 5 log Z 1 n ^ a & r (3.4.8)

However, it is equally easy to show that

H( r
*
) 5 log Z 1 n ^ a & r (3.4.9)

and therefore H( r ) # H( r
*
), with the equality holding if and only if r 5

r
*
. QED

If a (x) is the energy of the system, r
*

is the density of the Gibbs
canonical ensemble at a temperature T 5 n 2 1. (With many constraints ^ a i & r

we could define the density of a grand canonical ensemble.) We postulate

also that there is a one-to-one correspondence between thermodynamic equi-

librium states and the states of maximum entropy. Then, from the preceding

theorems it would be natural also to postulate that the thermodynamic entropy

S coincides with Gibbs entropy H( r ). In fact with this postulate we can
obtain the usual equilibrium thermodynamics. But, as we will see below, this

identification is not what we need to build a nonequilibrium thermodynamics,

since the Gibbs entropy does not have the right properties in this case.

3.5. Reversible and Irreversible Systems

In Section 2 the properties of the Hamiltonian force the motion to be
either reversible or irreversible. But in this section we study more general

motions, so we are forced to repeat these definitions for the more general

cases. Nevertheless, in order to prove some theorems, the motions cannot be

completely general, so we will restrict ourselves to motion produced by

Markov operators. Any linear operator Pt : L 1 ª L 1 such that



Dynamics, Thermodynamics, and Time Asymmetry 1359

(a) P t r $ 0, (b) |Pt r | 5 | r | (3.5.1)

for all t P R, r $ 0, r P L 1, is a Markov operator, i.e., an operator, which

acting on a density, gives a another density. Markov operators have a number

of useful properties. The most important is that if r P L 1 and it is not

restricted to r $ 0, then

|Pt r | # | r | (3.5.2)

which is known as the contractive property. A Markov operator is reversible

(or time-symmetric) if

(a) P0 r 5 r , (b) P t (Pt8 r ) 5 Pt 1 t8 r (3.5.3)

for all t, t8 P R (or Z ), or, in other words, reversible Markov operators form

a group. The evolution operator U(t) 5 e iLt of (2.3.58) is an example of a

reversible Markov operator. This is so because it is generated by a time-
symmetric or real Liouvillian L. However, if in the last definition we substitute

R and Z by R + and N, we have the definition of an irreversible Markov

operator. Irreversible Markov operators form a semigroup. The Gibbs entropy

cannot be used in nonequilibrium theory since it may decrease under the

action of some Markov operators (Lasota and Mackey, 1985), and therefore
we cannot use this entropy to formulate a second law of thermodynamics,

even in the first-order form. Nevertheless the Gibbs entropy is completely

successful in equilibrium situations, so the entropy we will choose for non-

equilibrium situations must coincide with the Gibbs entropy at equilibrium.

3.6. Conditional Entropy

If r and s are two densities such that supp r , supp s , then the

conditional entropy of density r with respect to density s is

HC( r | s ) 5 2 # X

r (x) log
r (x)

s (x)
dx (3.6.1)

The conditional entropy is always definite; i.e., it is finite or equal to 2 ` .

Evidently the conditional entropy measures the deviation of the density r
from the density s . Conditional entropy has two very important properties:

(i) Since r and s are both densities, the integrated Gibbs inequality (3.3.6)

implies that HC( r | s ) # 0. It is only when r 5 s that the equality holds. (ii)
If r L is the constant density of the microcanonical ensemble throughout the

phase space X, then HC( r | r L) 5 H ( r ) 2 log m L(X ). Therefore, in this case,

conditional entropy is a generalization of Gibbs entropy. As HC( r | r
*
) 5 0

when r 5 r
*

it is reasonable to postulate that



1360 Castagnino and Gunzig

S 2 S
*

5 HC( r | r
*
) (3.6.2)

e.g., when r
*

is the density of the canonical ensemble. We will see that this

definition is completely satisfactory, and that, using equation (3.6.2), we can
formulate the second law of thermodynamics in its second- and third-order

forms. The first result along these lines is a weak first-order form of the law

of thermodynamics, namely that the conditional entropy is never decreasing,

as is proved by:

Theorem 3.6.1. Let Pt be a Markov operator. Then

HC(Pt r | Pt s ) $ HC( r | s ) (3.6.3)

for all densities r and s . An additional result is the following: if s 5 r
*

is

stationary, namely Pt r *
5 r

*
, then

HC(Pt r | r
*
) $ HC ( r | r

*
) (3.6.4)

Thus this conditional entropy is always a nondecreasing function bounded

above and Hmax 5 HC( r
*
| r

*
) 5 0. Therefore this conditional entropy con-

verges as t ª ` , although more information about the evolution is required

in order to find the limiting value. Furthermore, if the stationary density is

uniform, namely that of the microcanonical ensemble, we have

H(Pt r ) $ H( r ) (3.6.5)

for all nonnegative r . Now Hmax 5 2 log[1/ m L(X )] and, as in the general

case, we have convergence when t ª ` . Therefore (3.6.2) seems a reasonable

assumption. But when the Markov operator is reversible all these nice inequal-
ities become equalities and the problem of the thermodynamic entropy reap-

pears. In fact:

Theorem 3.6.2. If Pt is a reversible Markov operator, then the conditional

entropy is absolutely constant for all times t and equal to the value determi-

nated by the choice of the initial densities r and s . That is,

HC(Pt r | Pt s ) 5 HC( r | s ) (3.6.6)

for all t.

Proof. Since Pt is reversible, by the previous theorem it follows that

HC(P t 1 t8 r | Pt 1 t s ) 5 HC (P tPt8 r | Pt Pt8 s ) (3.6.7)

$ HC(P t r | Pt s ) $ HC( r | s )

for all t, t8 since Pt is reversible. So let us choose t8 5 2 t; then for all times

we have
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HC( r | s ) $ HC(Pt r | Pt s ) $ HC( r | s ) (3.6.8)

and therefore

HC(Pt r | Pt s ) 5 HC( r | s ) (3.6.9)

for all t. QED

So in this case the conditional entropy is for ever fixed and determined
by the method of preparation of the system. So we have gained nothing if

the Markov operator is reversible.

4. THE CLASSICAL EVOLUTION

In this section we will study ª classical evolutionsº in the sense that
these evolutions are not quantum ones. Nevertheless the evolutions will be

just as general as that of the preceding section, i.e., not necessarily those of

Section 2.

4.1. The Frobenius± Perron Operator

A transformation St is called a measurable transformation if m
*
(

S 2 1
t (A )) is well defined for all subsets A , X, where S 2 1

t (A ) 5 B is the

counterimage of A, or in other words, St (B) 5 A. It should be remarked that

even if a unique S 2 1
t (x) may not exist (as in the case of irreversible evolutions)

the counterimage does exist, since it is the set of all the points x P B that

will go to A under the action of St . The transformation is nonsingular if
m

*
(S 2 1

t (A ) 5 0 Û m
*
(A ) 5 0. If St is a nonsingular transformation, then

the unique operator Pt : L 1 ® L 1 defined by

# A

Pt r (x) dx 5 # S
2 1
t (A)

r (x) dx (4.1.1)

is called the Frobenius±Perron operator corresponding to St . For each St the

Frobenius±Perron operator is unique. If r $ 0, then P t r $ 0. As S 2 1
t (X ) 5

X then |P t r | 5 | r | and these operators are Markov operators. Operator U(t)
of (2.3.58) is a Frobenius±Perron operator. St is r -measure preserving if

m r (S
2 1
t (A )) 5 m r (A)

for all sets A. Measure-preserving transformations are necessarily nonsingular;
we will also say that the measure m r is invariant under the transformation.

The Liouville theorem shows that transformation U (t) of (2.3.58) is Lebesgue-

measure preserving. We will call a state r steady if Pt r 5 r , for all t and it will

be symbolized by r
*
. In due time it will be also call a state of ª thermodynamic
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equilibrium.º The relation between invariant measures and the Frobenius±

Perron operator is stated by:

Theorem 4.1.1. Let St be a nonsingular transformation and P t its Frobe-

nius±Perron operator. Then there exist a state of thermodynamic equilibrium
whose density r

*
is a stationary state of Pt if and only if the measure m

*

m
*
(A ) 5 # A

r
*
(x) dx (4.1.2)

is invariant.

Therefore the transformation U(t) which preserves Lebesgue measure

necessarily has an equilibrium steady state, e.g., the uniform state of the

microcanonical ensemble. But Theorem 4.1.1 says nothing about the unique-

ness of the equilibrium state. We will discuss this problem in the next section.
A point x P A , X is called a recurrent point if there is some time t . 0

such that St(x) P A. An important result is PoincareÂrecurrence:

Theorem 4.1.2. Let St be a transformation with an invariant measure m *

operating in a finite space X, m
*
(X ) , ` , and let A be a subset of X with

positive r
*
-measure. Then there exists a point x in A that is recurrent.

Proof. Assume the contrary, i.e., that there are no recurrent points in A.
This then implies that S 2 1

t (A ) ù A 5 é for all times t . 0, and thus that

S 2 1
t (A ) ù S 2 1

t (A ) 5 é for all positive times t Þ t8. However, since St is

measure preserving, this implies that m
*
(S 2 1

t (A )) 5 m
*
(S 2 1

t8 (A )) and this,

coupled with the pairwise disjoint nature of the sets S 2 1
t (A ) and S 2 1

t8 (A ),

leads to

o
`

t 5 0

m
*
(A ) 5 o

`

t 5 0

m
*
(S 2 1

t (A )) 5 m
* F ø

`

t 5 0
S 2 1

t (A ) G # m
*
(X ) , `

(4.1.3)

The only way this inequality can be satisfied is for m
*
(A ) to be zero, which

is a contradiction. Thus, we conclude that A contains recurrent points. QED.

Therefore, in the ordinary mechanical motion of finite systems, almost

any point is recurrent, since the sets of nonrecurrent points have zero measure.

This fact seems to prevent the existence of irreversible evolutions; it is

impossible to reach a final equilibrium state, since the system will come back
as close to its initial condition as we wish, if we wait long enough. The

period we have to wait is called the PoincareÂrecurrence time. There are two

ways to avoid this problem: (i) The practical way is to compute the recurrence

time. It turns out that in a usual system (say with a number of molecules of
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the order of Avogadro’ s number) the time is much bigger than the age of the

universe, so the return to the initial conditions is practically unobservable.

(ii) The theoretical way is to consider that irreversibility is not a notion of
classical mechanics, but a notion which may only be defined in statistical

mechanics, where we deal with statistical ensembles of infinite identical

systems. Then the recurrent time of the ensemble, namely the time such that

we reobtain the initial condition in each one of the infinite identical systems
is of course infinite and the problem is theoretically solved. In the following

subsections we will study some properties of dynamical systems ordered by
their increasing chaotic behavior.

4.2. Ergodicity

It would be interesting to know whether the equilibrium state of Theorem

4.1.1 is unique or not. To answer this question we must introduce some new
concepts. (i) A set A such that S 2 1

t (A ) 5 A is called an invariant set. (ii) Any

invariant set A such that m
*
(A ) 5 0 or m

*
(X \A ) 5 0 is called trivial. (iii)

A nonsingular transformation St is called r
*
-ergodic if every invariant set A

is a trivial subset of the phase space X, i.e., either m
*
(A ) 5 0 or m

*
(X \A )

5 0. This means that if we consider a generic nonsingular subset A, the time-

evolved counterimage of this subset, S 2 1
t (A ), will wander around all X since

A cannot be invariant. (iv) If r
*

is the uniform density of the microcanonical

ensemble, we will say that St is uniformly ergodic. The motion within almost

all tori of integrable classical mechanical systems is ergodic (Tabor, 1980;

Arnold and Avez, 1968). Ergodicity is therefore a very usual property of the

mechanical systems of Section 2. The connection of the uniqueness of the
equilibrium state to the properties of the operators is stated in the following:

Theorem 4.2.1 (Lasota and Mackey, 1985). Let St be a nonsingular

transformation and P t the corresponding Frobenius±Perron operator. St is r
*
-

ergodic if and only if Pt has a unique state of thermodynamic equilibrium

with associated stationary density r
*
, namely a density such that Pt r *

5 r
*
.

Hence, ergodicity is the necessary and sufficient condition for the uniqueness

of thermodynamic equilibrium, and allows us to formulate a third-order

second law. But this of course is only half the picture, because we must also

understand why the system evolves to this equilibrium state. Let us state an

important result:

Theorem 4.2.2 (Lasota and Mackey, 1985). Let St be a nonsingular
transformation and Pt the corresponding Frobenius±Perron operator with

stationary density r
*

. 0 for all points in phase space X. Then St is r
*
-

ergodic if and only if {P t r } is CeÂsaro convergent to r
*

for all densities r ,

i.e., if and only if



1364 Castagnino and Gunzig

lim
tª `

1

t o
t 2 1

k 5 0

(Pk r | s ) 5 ( r
*
| s ) (4.2.1)

in the discrete-time case, or if and only if

lim
tª̀

1

t
(Pt r | s ) dt 5 ( r

*
| s ) (4.2.2)

in the continuous-time case, for all bounded measurable functions s and
where ( r | s ) 5 * X r (x) s (x) m (x) dx [in this case m (x) is an arbitrary measure]

is a generalization of inner product (2.A.2.1).

4.3. Mixing

This will be the main property of the dynamical systems we will study,

and it serves to guarantee the approach of the system to an equilibrium state.

Let St be a r
*
-measure-preserving transformation operating in a normalized

space X [ m
*
(X ) 5 1]. Then St is called r

*
-mixing if

lim
tª `

m
*
(A ù S 2 1

t (B)) 5 m
*
(A ) m

*
(B) (4.3.1)

for all sets A and B. If r
*

is the uniform density of the microcanonical

ensemble, then we will say that St is uniformly mixing. Some tori of mechani-

cal nonintegrable system are broken, and then a chaotic motion in phase

space takes place. Chaos, most likely with mixing properties, occurs very

frequently in mechanical systems (Tabor, 1980; Arnold and Avez, 1968). A
very important and popular example of a uniformly mixing transformation

is the so-called baker ’ s transformation, which operates in the phase space

X 5 [0, 1] 3 [0, 1] and is defined by the following procedure: (i) Squeeze

the 1 3 1 square to a 2 3 1±2 rectangle, and (ii) cut the rectangle vertically

into two rectangles and pile them up to form another 1 3 1 rectangle. In

doing so, the point of the square will move as

(x, y) ª S(x, y) 5 5 1 2x,
1

2
y 2 if 0 # x #

1

2

1 2x 2 1,
1

2
1

1

2
y 2 if

1

2
# x # 1

(4.3.2)

The transformation is shown in Fig. 2, where in the first square, the one

corresponding to t 5 0, the lower half is shaded and corresponds to a subset

B. It is easy to see that this transformation is reversible. The fate of this area

B evolving to the future is shown on the right-hand side of the figure (it is

transformed into a great number of horizontal strips with area 1±2 ), and evolving
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Fig. 2. The baker’ s transformation .

to the past in the left-hand side (the strips are now vertical). A smaller subset

A is also shown. It is then easy to verify that condition (4.3.1) is fulfilled

[the final measure of St(B) ù A will be 1±2 m L(A ), since the initial measure of

B is just 1±2 , so (4.3.1) is satisfied]. We will study this transformation in detail

in Section 4.5 using the extended dynamics technique. Much more compli-
cated mixing evolutions than (4.3.2) can be invented. In fact, the baker ’ s

transformation is the simplest of all; it is the simplest model of the famous

Gibbs ink drop. Gibbs attempted to explain the essence of irreversibility with

the ink drop model. If a drop of blue ink is introduced in a glass of water,
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even if the volume of the ink drop remains constant (as the volume of any

subset of mechanical phase space, according to Liouville’ s theorem) we will

have, after a while, a homogeneous mixture of bluish water. What happens
is that the motion of the water is mixing and therefore the ink drop is deformed

(even if its volume is constant) in such a way that it is transformed into a

set of very thin filaments that are present in every portion of the water, giving

the result that the water has become bluish. The growth of this filament-like

structure gives an arrow of time and it was for Gibbs the essence of irreversibil-

ity. This phenomenon is modeled by the baker ’ s transformation. In fact, let
us consider a small rectangle a 3 b within the square 1 3 1, and let us

consider a small stain of lower quality flour within the bread dough. The

height of the stain will successively become 1±2 b, 1±4 b, . . . , (1/t)b, . . . , while

the base of the stain will become 2a, 4a, . . . , ta, . . . , in such a way that

the area is conserved. Eventually a time is reached when ta . 1, and then

the stain will be cut in two, and then in four, eight, etc., in such a way that
it will become a set of horizontal filaments of decreasing height, namely a

ª cubistº picture of the ink drop, so that the baker ’ s transformation is just a

model of the ink drop phenomenon. If now we consider the much more

complicated evolution of the ink drop, and if the volume of the ink drop is

1% of the volume of the water, it is clear that the motion of usual water is
mixing according to definition (4.3.1), as the baker ’ s transformation. In fact,

if the motion is mixing, when t ª ` every subset A , X will have 1% of

ink and therefore the distribution of ink will become homogeneous. As this

is the case with the real ink drop, we can conclude that the real motion is

mixing. It is a straightforward consequence of the definition that r
*
-mixing

implies r
*
-ergodicity. In fact, if B is an invariant set, (4.3.1) reads

m
*
(A ù B) 5 m

*
(A ) m

*
(B)

for all sets A. Now if we take B 5 A, we obtain m
*
(B) 5 [ m

*
(B)]2 and

therefore either m
*
(B) 5 0, or m

*
(B) 5 1 [so in this case m

*
(X 2 B) 5 0].

So the evolution is r
*
-ergodic. Now we have arrived at our most

important theorem.

Theorem 4.3.1 (Lasota and Mackey, 1985). Let St be an ergodic transfor-

mation, with stationary density r
*

of the associated Frobenius±Perron opera-

tor, operating in a phase space of finite r
*
-measure. Then St is mixing if and

only if {Pt r } is weakly convergent to r
*
, i.e., if

lim
tª̀

(Pt r , s ) 5 ( r
*
, s ) (4.3.3)

where s is a bounded measurable function.

If a sequence is weakly convergent as well as CeÂsaro convergent, then

we can see again that mixing evolutions are ergodic. So the mixing property
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ensures a weak convergence of {Pt r } to r
*
. But in the example of the baker ’ s

transformation the strong limits toward the far past or the far future do not

exist. In fact, the support of any distribution function (if it has a measure ,
1) will be a set of infinite horizontal, toward the future or vertical lines

toward the past. These sets cannot be the support of any regular distribution

function. Nevertheless the weak limit (4.3.3) does exist with r
*

5 1. The

physical meaning of Theorem 4.3.1 is very clear: Let us consider a (nonvis-

cous) fluid in motion in a cubic box. As energy is conserved, the motion

will never stop, and therefore, according to the laws of mechanics, equilibrium
will never be attained, and Pt r will have no limit. This will be the case if

the motion is oscillatory, namely a pressure wave which oscillates back and

forth between two parallel walls of the box. But if the motion is mixing, it

is so complicated that there are portions of the fluid moving in every direction

in the vicinity of every point of the box. In this case, if we take the inner

product (Pt r | s ), we are making an average that goes to an equilibrium average
( r

*
| s ) when t ª ` . Therefore, even if there is always motion, the motion

average gives an image of equilibrium. This is the profound meaning of

Theorem 4.3.1 and the way to obtain a synthesis of the apparent contradiction

of dynamics and thermodynamics: even if the dynamics says that the energy

is conserved and the motion will never stop, there is a thermodynamic
equilibrium in average, because the motion is mixing. From this point, the

extended dynamics and coarse graining follow different paths, as we have

explained in the introduction and we will discuss below. But let us remember

that the problem is not completely solved, since all the nice inequalities of

Section 3.6, which are necessary to explain the second law are equalities for

reversible systems, and all systems in nature are considered to be, at least
microscopically, reversible. There are systems endowed with properties more

chaotic than mixing. They are (i) Kolmogorov systems (Lasota and Mackey

1985) that are necessarily mixing (Walter, 1982), (ii) Anosov systems (Lasota

and Mackey, 1985; Arnold and Avez, 1968; Anosov, 1963), and (iii) Bernoulli

systems, the most chaotic of all (Schild, 1979). The baker ’ s transformation

is, in fact, a Bernoulli system (Antoniou and Tasaki, 1991).

4.4. Exactness

We will now introduce a property which will (apparently) solve all our

problems. If St is a r
*
-measure-preserving transformation operating in a phase

space X, then St is said to be r
*
-exact if

lim
tª̀

m
*
(St (A )) 5 1 (4.4.1)

for all sets A of nonzero measure. This is possible even if St is r
*
-measure

preserving, since an evolution is measure preserving if (4.1.2) is satisfied
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and this equation is not equivalent to m
*
(St(A )) 5 m

*
(A ) if the evolution is

not reversible. The Renyi map is a good example. Let us consider a dyadic

Renyi map:

R: [0, 1), ® [0, 1), x ® Rx 5 2x (mod 1) (4.4.2)

As the length of any subset A is multiplied by two in each transformation,

this map is exact since it satisfies (4.4.1). In any case it is also measure
preserving. In fact, let us consider, e.g., the subset A 5 [0,1/2); R 2 1(A ) is

[0, 1/4) ø [1/2, 3/4), and therefore both subsets have measure 1/2. If r
*

is

the uniform density of the microcanonical ensemble, we say that St is uni-

formly exact. The essential point to understand is that reversible system cannot

be exact. In fact, for a reversible r
*
-measure-preserving transformation, we

have

m
*
(St (A )) 5 m

*
[S 2 1

t (St(A ))] 5 m
*
(A ) (4.4.3)

and thus the definition of exactness is violated. Since, usually, classical

dynamical systems are (by the Liouville theorem) measure preserving, and

also reversible, they are not exact. Nevertheless, as we will see, exactness

is really the property we are looking for. Precisely:

Theorem 4.4.1 (Lasota and Mackey, 1985). If St is a r
*
-measure-preserv-

ing transformation operating on a finite normalizable phase space X and Pt

is the associated Frobenius±Perron operator corresponding to St , then St is

r
*
-exact if and only if

lim
t ® `

|Pt r 2 r
*
| 5 0 (4.4.4)

Therefore ergodicity corresponds to CeÂsaro convergence; mixing corres-

ponds to weak convergence; exactness corresponds to strong convergence

(i.e., convergence in the norm). A strongly convergent sequence is also

weakly convergent. Thus we can deduce that exact evolutions are also mixing

evolutions and therefore ergodic evolutions. Moreover, since we are looking
for a strong limit, we see that working with ordinary distribution functions,

we will find this limit only if the transformation is exact. But ordinary

classical (microscopical) systems are not exact, since they are reversible and

measure preserving. As an example, we have shown that the reversible baker ’ s

transformation does not have strong limits toward the past and the future. In

fact the baker ’ s transformation, being reversible, cannot be exact. Thus our
problem can now be clearly stated: if we want a strong limit, our evolutions

must be exact. But exact evolutions are not reversible and all microscopic

transformations are reversible, and therefore we cannot have a strong limit.

Furthermore we also have the following result:
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Theorem 4.4.2 (Lasota and Mackey, 1985). Let P t be a Markov operator

operating in phase space X. Then the conditional entropy of Pt r with respect

to density r
*

goes to a maximum value of zero as t ® ` , i.e.,

lim
t ® `

HC (Pt r | r
*
) 5 0 (4.4.5)

if and only if P t is r
*
-exact. This theorem tells us the necessary and sufficient

criteria to be able to state the second law of thermodynamics in third-order

form, namely, for the entropy of the system to converge to its maximum

value regardless of the way in which the system was prepared. This condition
is that the system must evolve according to an exact transformation. But

such systems do not exist in nature. So dynamics cannot be related, at least

trivially, with thermodynamics. Therefore our theory must be modified one

way or the other.

4.5. Mixing Studied by the Extended Dynamics Technique

Mixing evolutions are studied by the extended dynamics technique in

Antoniou and Tasaki (1991, 1993a, b), using a perturbative method, which
can be implemented in any example. For technical reasons we will present

the most important mixing evolutions and we refer to the above papers for

the general perturbative method.

4.5.1. The Renyi Maps

The b -adic Renyi map R on the interval [0, 1) is the multiplication,

modulo 1, by the integer b $ 2:

R: [0.1) ® [0, 1); x ® Rx 5 b x (mod 1) (4.5.1.1)

The forward iteration of the Renyi map n times defines a ª cascadeº or time

evolution with time t 5 n P Z. This evolution only preserves the Lebesgue

measure, as we have shown in (4.4.3). The density functions r (x) evolves

according the Frobenius±Perron operator U:

U r (x) 5
1

b o
b 2 1

r 5 0

r 1 x 1 r

b 2 (4.5.1.2)

The Gel’ fand-Maurin theorem (Theorem 4.A.1; see below) tells us that
we can find a spectral expansion in the eigenvectors of this operator in an

adequately rigged Hilbert space. In fact, using the perturbative methods of

Antoniou and Tasaki (1991, 1993a, b), the spectral decomposition of U can

be found, and reads
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U 5 o
`

n 5 0

1

b n | Bn)(BÄ n | (4.5.1.3)

where

| Bn(x)) 5 | x n 1 o
n 2 1

m 5 0
x m n!

m! (n 2 m)!
Bn 2 m) (4.5.1.4)

where Bn(x) is the n-degree Bernoulli polynomial defined by the generat-

ing function

zezx

e z 2 1
5 o

`

n 5 0

Bn(x)

n!
zn (4.5.1.5a)

and

(BÄ n | 5

(1 | n 5 0

1 ( 2 1)(n 2 1)

n!
{ d (n 2 1)(x 2 1) 2 d (n 2 1)(x)} | , n 5 1, 2,

(4.5.1.5b)

where (1 | is the constant distribution function. From (4.5.1.5b) we can see

that the elements of the spectral decomposition (4.5.1.3) do not belong to

+, but to a larger space where the Dirac d must have a precise mathematical

meaning. This space is, in fact, a rigged Hilbert space, which we will define
below, in full agreement with the Gel’ fand±Maurin theorem. The system

{ | Bn), (BÄ n | } is biorthonormal and complete, obeying

(BÄ n | Bm) 5 d nm (4.5.1.6)

o
`

n 5 0

| Bn)(BÄ n | 5 1 (4.5.1.7)

The spectral decomposition (4.5.1.3) acquires a precise mathematical meaning

if we define as test space F the space of polynomials 3. This space is dense
in + 5 L 2, nuclear (in fact, it is the union of an infinite and discrete set of

finite-dimensional spaces), complete, and stable under U, and U is continuous

in the topology of 3. It is therefore an appropriate test space to give meaning

to the spectral decomposition whose elements belong to F 3 . But other kinds

of test function spaces can be defined and we will obtain different spectra.

For example, a continuous set of eigenfunctions can be found, with adequate
rigging, showing that the Renyi maps have continuous spectrum, namely the

set of complex numbers z such that | z | , 1 (all the mixing operators have

a spectral decomposition with a continuous spectrum in Hilbert space). If

t P Z, from (4.5.1.3 and 4.5.1.6) we can see that the evolution operator is
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U t 5 o
`

n 5 0

1

b nt | Bn)(BÍ n | 5 | 1)(1 | 1 o
`

n 5 1

1

b nt | Bn)(BÄ n | (4.5.1.8)

If we want to work only in space +, we must remember that all the formulas

above are just weak equations; for example, the last is just

( s | U t r ) 5 ( s | 1)(1 | r ) 1 ( s | o
`

n 5 1

1

b nt | Bn)(BÄ n | r ) (4.5.1.9)

for all r , s P 3, and r is a density. Then as b . 1 and r is normalized, we have

lim
tª `

( s , U t r ) 5 ( s | 1) (4.5.1.10)

in perfect agreement with Theorem 4.3.1. Equation (4.5.1.9) is simply the

weak version (or coarse graining) of (4.5.1.8), which allows us to work within

space +, but always using weak limits as (4.5.1.10). However, if we work

with functionals directly, namely in space F 3 , then from (4.5.1.8) we can

say that

lim
tª̀

U t | r ) 5 | 1) (4.5.1.11)

which is a strong limit, namely the extended dynamics version of (4.5.1.10).

If we call b 5 e 2 g , 1, then from (4.5.1.9) we can also say

r (t) 5 U t r 5 r
*

1 r 1(t)e
2 g t, r

*
5 | 1) (4.5.1.12)

where r
*

5 | 1) is the equilibrium distribution function and r 1(t)e
2 g t is

something like a ª fluctuationº around the equilibrium state. We include this

last equation because we will find a similar one in the quantum case.

4.5.2. The Baker’s Transformation

The b -adic, b 5 2, 3, . . . , baker’ s transformation in the unit square
Y 5 [0, 1) 3 [0, 1) is a two-step operation: (i) Squeeze the 1 3 1 square to

a b 3 1/ b rectangle, and (ii) cut the rectangle vertically into b rectangles

and pile them up to form another 1 3 1 square. Then

(x, y) ® B (x, y) 5 1 b x 2 r,
y 1 r

b 2 (4.5.2.1)

for
r

b
# x ,

r 1 1

b
, r 5 0, . . . , b 2 1

This equation is an obvious generalization of (4.3.2), which is the particular

case of (4.5.2.1) for b 5 2. As we can see, we have sort of two Renyi maps,

one in each coordinate. The baker’ s transformation is a Bernoulli shift and
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has Kolmogorov±Sinai entropy log2 b (Schild, 1963). The invariant measure

is Lebesgue measure. The density function r (x, y) evolves according to the

Frobenius±Perron operator U:

U r (x, y) 5 r (B 2 1(x, y)) 5 r 1 x 1 r

b
, b y 2 r 2

for
r

b
# y ,

r 1 1

b
, r 5 0, . . . , b 2 1 (4.5.2.2)

This operator is unitary in the Hilbert space + 5 L 2, the equilibrium distribu-

tion function is the constant function r
*

5 1, and the Lebesgue spectrum is

the unit circle plus the simple eigenvalue 1. As the baker ’ s transformation

B is the natural extension of the Renyi map R, the conclusion we can obtain

is the same and we refer the reader to Bohm and Gadella (1989) for details.

B acts on the Liouville±Hilbert space + 5 L 2 5 L 2
x J L 2

y and a suitable
initial biorthonormal system can be constructed from the tensor products of

the eigenfunctions of the b -adic Renyi map [cf. (4.5.1.4) and (4.5.1.5)]

| w nm & 5 Bn(x)B
Ä m( y) and ^ w Ä nm | 5 BÄ n(x)Bm( y) (4.5.2.3)

Using these bases and the same perturbative method as before, the following

spectral decomposition can be obtained:

U 5 | f00 & ^ fÄ00 |

1 o
`

v 5 1 H o
v

r 5 0

1

b v

| fv, r & ^ fÄv, r | 1 o
v 2 1

r 5 0
| fv, r 1 1 & ^ fÄv, r | J (4.5.2.4)

where the vectors | fv,r & and ^ fÄv,r | can be obtained from the vectors of (4.5.2.3).

As we have said, the Liouville spectrum is the unit circle plus the eigenvalue

1, so in the new spectral decomposition we have found new eigenvalues

1/ b n , 1. The vectors w nm and w Ä nm are linear functionals over the spaces

F 2 5 L2
x ^ 3y and F + 5 3x ^ L2

y. Furthermore, it can be shown that the
vectors fnm P F 3

2 and fnm P F 3
1 are also functionals over the same spaces,

so the spectral decomposition (4.5.2.4) can be implemented if we use these

functional vector spaces. We have enlarged the state space with densities

which can be distributions in the y coordinate, in the case of F 3
2 : e.g., if the

y distributions are Dirac deltas, we will have a distribution whose support is

a set of horizontal straight lines, which we will call a ª horizontal Dirac
comb.º In the case of F 3

1 we must change the y by the x, and we would

have, e.g., ª vertical Dirac’ s combs.º Now, mutatis mutandis, we can repeat

what we have said in (4.5.1.9) to (4.5.1.12), and we will find similar equations

for the baker ’ s transformation. The equilibrium distribution in this case will be
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r
*

5 | f00 & (4.5.2.4)

where | f00 & P F 3
2 .

4.6. Appendix 4A. Rigged Hilbert Spaces (Ballentine, 1990; Bohm
and Gadella, 198

As is well known, all linear spaces of the same dimension are isomorphic

if the dimension is finite. This is not the case if the dimension is infinite. In

fact, let us consider the infinite sequence of the vectors of a basis of an

infinite-dimension vector space

{ F n: n 5 1, 2, . . .} (4.A.1)

Let V be the vector space of all finite linear combinations of the vectors of

the basis above, namely C P V if

C 5 o
i

n 5 1
cn F n (4.A.2)

V is a linear space of infinite dimension, but we will see that we can build

other spaces using the basis { F n}. For instance, we can add to V the limit

points of all the convergent infinite sequences of vectors of V. But, defining

different criteria of convergence, we will have different sets of limit points
and therefore different vector spaces. The most useful convergence is the

convergence in the norm. The sequence { C i} converges in the norm to a

limit point x if

lim
t ® `

| x 2 C i | 5 0 (4.A.3)

If the sequences { C i} are sequences of vectors of V and they converge in

the norm and we add the limit points x of these sequences to V, then we

obtain a larger space * where we have finite sequences like (4.A.2), but also

limit points of infinite sequences. We will say that * is the closure of V and

also that V is dense in *. However, we can use other kinds of convergences,

namely other topologies, and we will obtain different spaces. Let us suppose
that we choose the sequences such that the coefficients cn satisfy the condition

o
`

n 5 1

| cn | 2 , ` (4.A.4)

Then, adding the corresponding limit points, we obtain again a Hilbert space

* which contains all the sequences which converge in norm; it is also called

the completion of V with respect to the topology of the norm. However, we

can also consider an infinite-dimensional linear space J of all, either finite



1374 Castagnino and Gunzig

or infinite, linear combinations of the basis { F n}, namely all the linear

combinations j 5 S n cn F n with no limitations imposed on the coefficients

cn. Of course we cannot define a norm in such a space, but we now have
three infinite-dimensional linear spaces such that

V , * , J (4.A.5)

Let us define the inner product

( f, h) 5 o
n

b *n cn (4.A.6)

Then * is the space of the vectors h 5 S n cn F n such that (h, h) 5
S | cn | 2 , ` . Let us now define the conjugated space of *: * 3 , J of

all linear functionals over *, namely vectors f 5 S n bn F n such that the

inner product

f [h] 5 ( f, h) 5 o
n

b *n cn (4.A.7)

is convergent for all h P *. The convergence of this inner product is a

consequence of the Schwarz inequality

| ( f, h) | 2 # (h, h)( f, f ) (4.A.8)

so (4.A.7) converges if ( f, f ) 5 ( n | bn | 2 converges and, therefore, f P *, so

* 5 * 3 . (We can in addition define the antilinear space as f [h] 5 (h, f )

i.e., bras are linear functionals and kets can be considered as antilinear

functionals.) Let us now define a new space V as the space of all vectors
v 5 ( n un F n , endowed with coefficients cn such that they satisfy the following

set of infinite conditions:

o
n

| un | 2n m , ` , m 5 1, 2, 3, . . . (4.A.9)

Obviously V , *. Let us now find the conjugate space of V , V 3 , J ,

namely the space of convergent linear continuous functionals over V . These

functionals read s 5 ( n v *n F n and they are such that

s [ v ] 5 ( s , v ) 5 o
n

v *n un (4.A.10)

is convergent for all v P V . Therefore

o
n

| vn | 2n 2 m , ` , m 5 1, 2, 3, . . . (4.A.11)

In fact, according to Schwarz’ s lemma, we have
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Z o n v *n n 2 m/2unn
m/2 Z

2

, 1 o n | vn | 2n 2 m 2 1 o n | un | 2n m 2 , 1 ` (4.A.12)

and the rhs is convergent if (4.A.9) and (4.A.11) are fulfilled. As it is obvious
that V 3 5 J , we now have the following set of infinite-dimensional spaces:

V , V , * 5 * 3 , V 3 , V 3 5 J (4.A.13)

Any triplet

V , * , V 3 (4.A.14)

such as those of (4.A.12) and others which may be obtained [e.g., if we

change the condition m 5 1, 2, . . . of (4.A.9) by 1 # m # M, for some M
P N ] are called Gel’ fand triplets. V is known as the test space and V 3 as

the rigged space. Mathematically, it is convenient that the test space should
be a nuclear space. Heuristically speaking, nuclear (barreled) spaces are the

infinite-dimensional spaces endowed with the largest number of properties of

finite-dimensional spaces, one of them being discrete spectral decomposition.

Precisely, nuclear spaces are spaces obtained, so to speak, as the union of

an infinite sequence of spaces of finite dimension. Since space V is, from
our point of view, the space of operators corresponding to real measurement

apparatus, and since these devices make only a finite (so less than discrete)

number of measurements, logically V must be a nuclear space. In fact, even

if physical devices make a finite number of measurements, we can conceive

that these numbers grow with the progress of technology. Then an infinite,

but discrete, number of measurements would correspond to the limit of an
infinitely long period of technological progress. A finite number of measure-

ments will correspond to a test space of a finite number of dimensions. Then

the test space corresponding to the limit of technological progress will

be a nuclear space, since this space is the limit of a sequence of finite-

dimensional spaces.

For example, a measurement device makes n measurements, which
can define n points on a curve, which can be interpolated by a polynomial

of degree n. The space of polynomials of degree n will be the test space

corresponding to this device. In the limit of technological progress, the

test space will be the space 3 of polynomials of any degree, in fact a

nuclear space. Generally speaking, by choosing different nuclear test
function spaces, we can also choose the physical properties of our measuring

devices. In finite-dimensional vector spaces the eigenvalue problem, for

every self-adjoint linear operator A, can be solved in a unique way.

Namely we can find a unique spectrum {ai} and an orthonormal basis

{ C n} such that A C n 5 an C n. This is not so for infinite-dimensional



1376 Castagnino and Gunzig

linear spaces, since the spectrum depends on the rigging we use; nevertheless

one can demonstrate:

Gel’ fand± Maurin Theorem 4.A.1. If A is a self adjoint operator in *,

there is always a complete set of eigenvectors of A in some rigged Hilbert

space V 3 .

Let us give some very important examples:

(i) Let J be the space of functions f (x) of one real variable x and let
A 5 P 5 2 i d /dx be the self-adjoint momentum operator in * 5 L 2. The

eigenvectors of P are the plane waves e ikx which do not belong to L 2,

since they do not have finite norm. Nevertheless they can be considered as

functionals over a convenient space test function F , since

e ikx[ f ] 5 (e ikx, f (x)) 5 #
1 `

2 `

e 2 ikxf (x) dx ’ f (k) (4.A.15)

where
Ù
f (k) is the Fourier transform of f (x) and F is any subspace of * such

that (4.A.15) is convergent. Then we have the Gel’ fand triplet F , * ,
F 3 and e ikx P F 3 .

(ii) Let J be as in the example above and A 5 Q 5 x be the position

self-adjoint operator in * 5 L 2. The eigenvectors of Q are the Dirac deltas

d (x 2 y), since Q d (x 2 y) 5 y d (x 2 y); these distributions do not belong

to L 2 since they are not even functions. Nevertheless they can be considered

as functionals over a convenient space of test functions F , since we can
rigorously define these deltas as the functionals

d y[ f(x)] 5 f ( y) (4.A.16)

where f (x) is any function of F . Usually physicists write this last equation as

d y[ f(x)] 5 ( d (x 2 y), f (x)) 5 #
1 `

2 `

d (x 2 y) f (x) dx 5 f ( y)

(4.A.17)

even if the integral in this last equation does not have a rigorous definition

Usually F is the set of functions with nice properties, e.g., continuous,
derivable, with compact support, etc. Then d y P F 3 . These examples show

that usual operators do not have their eigenvalues in *, but in properly

chosen rigged Hilbert spaces.

5. THE QUANTUM EVOLUTION

As the laws of quantum evolution are well known (Ballentine, 1990;

Messiah, 1962; Roman, 1965), in this section we will see the use of the no-

graining and coarse-graining techniques in quantum mechanics.
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5.1. The Case of Discrete Spectra

Let us begin by simply making a heuristic calculation. Let * be the

quantum Hilbert space. Let { | i & } be an energy eigenbasis of this Hilbert
space, where i is a discrete index. The quantum Liouville space is + 5 * 3
*, and a generic density matrix reads

r 5 o
i, j

r ij | i & ^ j | (5.1.1)

where since r 5 r ² , one has r ij 5 r *ji . Also, r ii $ 0. Let O be a self-adjoint

operator; it reads

O 5 o
i, j

Oij | i & ^ j | (5.1.2)

where Oij 5 O *ji . The mean value of operator O in the quantum state r is

^ O & r 5 ( r | O) 5 tr( r | O) 5 o
ij

r ijOji (5.1.3)

As | i & is an energy eigenstate, we have

H | i & 5 v i | i & (5.1.4)

where v i is the energy of state | i & . The time evolution of this eigenstate reads

| i (t) & 5 e 2 i v it | i & (5.1.5)

Therefore the time evolution of r is

r (t) 5 o
ij

r ij | i (t) & ^ j (t) | 5 o
ij

r ije
i( v i 2 v j)t | i & ^ j |

5 o
i

r ii | i & ^ i | 1 o
i Þ j

r ij e
i( v i 2 v j)t | i & ^ j | (5.1.6)

Then the time evolution of the mean value of equation (5.1.3) is

^ O & r (t) 5 ( r (t) | O) 5 o
i

r iiO ii 1 o
i Þ j

r ije
i( v i 2 v j)tOji (5.1.7)

Now let us suppose that the steps of the spectrum are so small and the
function under the second summation on the rhs of the last equation is so

nice (precisely L 1) that this summation can be approximated by an integral.

Therefore, if the function is nice enough, from the Riemann±Lebesgue theo-

rem we have

lim
t ® `

( r (t) | O) 5 o
i

r iiO ii 5 ( r
*
| O) (5.1.8)

where we have defined an equilibrium density matrix r
*ij 5 r ii d ij. This
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equation would be the quantum equivalent of the classical equation (4.3.3)

for mixing systems (even if in the quantum case the vacuum is not unique);

it shows that both systems have a similar behavior and it opens the possibility
of using classical theorems in the quantum case also. Of course this demonstra-

tion is not rigorous, but it motivates the study of continuous spectra in the

next section. Using continuous spectra, we will find a rigorous theorem. The

role played by continuous spectra in this case is not strange, since evolution

operators of mixing systems have this kind of spectrum (Halmos, 1956). In

any case, we can also say that the most we can get is a weak limit. Furthermore,
the decomposition of the rhs of equation (5.1.6) is not a decomposition within

space *, since its second term has a null trace [cf. (2.3.2)].

5.2. The Case of a Continuous Spectrum (Castagnino and Laura,
1997)

In the next subsection we will consider the Friedrichs model, which can

be defined in Hilbert space H with a energy eigenbasis { | 1 & , | v & }, 0 # v ,
` , with Hamiltonian operator

H 5 v 1 | 1 & ^ 1 | 1 #
`

0

d v v | v & ^ v |

1 l #
`

0

d v g ( v )[ | v & ^ 1 v 1 | 1 & ^ v | ] (5.2.1)

In this section this formula will only be used as an example of an operator

expanded in a continuous spectrum basis, to conclude that the expansion of

a generic self-adjoint operator reads

O 5 #
`

0

d v O v | v & ^ v | 1 # #
`

0

d v d v 8 O v v 8 | v & ^ v 8 | (5.2.2)

where O v , O v v 8 are regular functions such that O v P R, O *v 8 v 5 O v v 8, and

they belong to the Schwarz class S. Below we will say that O P F , a space

with some other properties which we will choose for convenience. Thus

functions O v , O v v 8 will be restricted by this choice. The first term on the

rhs of (5.2.2) will be called the singular component of O, since it could be
written as the second term, but with a singular coefficient O v v 8 5 O v d ( v 2
v 8). The second term will be called the regular term. Let us consider the

density matrix at time t 5 0:

r (0) 5 # #
`

0

d v d v 8 r v v 8 | v & ^ v 8 | (5.2.3)

At time t this state reads
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r (t) 5 # #
`

0

d v d v 8 r v v 8 | v & ^ v 8 | e 2 i( v 2 v 8)t (5.2.4)

If we consider that O can be written as the r of equation (5.2.3) but with

coefficients O v d ( v 2 v 8) 1 O v v 8 in (5.2.2), the mean value of operator O
in the state r (t) is

^ O & r (t) 5 ( r (t) | O) 5 tr( r (t)O) #
`

0

d v r v v O v

1 # #
`

0

d v d v 8 r v v 8O v 8 v e 2 i( v 2 v 8)t (5.2.5)

Now, if the space F r v v 8 belongs also to the Schwarz class S, the Riemann±

Lebesgue theorem can be used, because r v v 8O v 8 v P L 1, and we have

lim
t ® `

^ O & r (t) 5 #
`

0

d v O v r v v (5.2.6)

As this equation is valid for any operator O P F , we can try to find a

density matrix r
*

such that

lim
t ® `

^ O & r (t) 5 lim
tª̀

( r t) | O) 5 ( r * | O) (5.2.7)

It is easy to see that the density matrix r
*

cannot be found if r v v 8 is a regular

function of variable v , v 8; i.e., from (5.2.5) we see that to obtain this result

it is necessary that r v v 8 5 0, v Þ v 8, and r v v Þ 0, but we cannot write r v v 8

5 r v d ( v 2 v 8), because in this case the r is not regular (Antoniou et al.,
1995). Then we are forced to consider states with diagonal singularities, that

is, with the same operator pathology. So we are forced to introduce singular

components in the density matrix, which means the r v , v 8 of (5.2.3) cannot

be regular and it must read something like r v d ( v 2 v 8) 1 r v , v 8. But now if

we try to find the mean value (5.2.5), the O v d ( v 2 v 8) term and the r v d ( v 2
v 8) term produce the result

# #
`

0

O v d ( v 2 v 8) r v 8 d ( v 2 v 8) d v d v 8 5 #
`

0

O v r v d (0) d v ® `

which is divergent. Therefore to have a formalism free from these problems

we are forced to start afresh, and to consider the operators O to be defined
by the regular functions O v , O v v 8 and the state functions, r to be the matrices

of rigged space F 3 defined as the linear operators on space F but with some

extra properties, precisely defined by two regular Schwarz functions r v ,

r v , v 8). Then we have
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( r | 0) 5 #
`

0

d v r v O v 1 # #
`

0

d v d v 8 r v 8 v O v v 8 (5.2.8)

where r v P R +, r *v 8 v 5 r gv v 8. So we are forced to introduce a singular compo-

nent r v also in the density matrices. Now r
*

may be found; it is the functional

of space F x with r v Þ 0, r v v 8 5 0. The consistency of this method is proved

by the logical physical results of Castagnino and Laura (1997). Equa-

tion(5.2.7) can now be considered as the rigorous quantum equivalent of the
classical equation (4.3.3). We can call the weak limit of this equation the

ª quantum mixingº property and state the following.

Theorem 5.2.1. Quantum systems with continuous spectra are endowed

with the quantum mixing property (provided we use the formalism based on

(5.2.8). Equation (5.2.7) can also be considered a proof of a weak decoherence

in quantum systems. This would be the no-graining conclusion. However,

we would like to have a strong decoherence. Then we can follow two methods.
We can either use coarse-graining, a well-known technique discussed in Hu

et al. (1993) and Caldeira and Leggett (1995), or we can use extended

dynamics. In this case, in order to obtain a strong limit from the weak limit

of (5.2.8), we must give a precise sense to all terms on the rhs of equation

(5.2.5), rigging the Hilbert space * in such a way that all the mathematical

characters are well defined. So, working with the functional of space F 3 ,
we can write the strong limit

lim
t ® `

r (t) 5 r
*

(5.2.9)

which corresponds to the classical strong limit (4.4.3). Now we would like

to obtain not just a limit, but the time-irreversible evolution of r (t), which

yields the limit (5.8.9). Unfortunately our ability to work with continuous
spectra is very limited (Gadella and Rudin, 1996), so we are forced to mix

various techniques, as we will see in the next subsections.

5.3. The Friedrichs model

5.3.1. The General Formalism

We believe that the well-known Friedrichs model is the best quantum

example to fix the ideas. In this example we have a free (naked) stable

quantum state | 1 & (which is postulated to be real: K | 1 & 5 | 1 & ) which becomes

unstable when coupled to a continuous field | v & . The stable state may be
considered as a simplified model of an atom in an excited stable state,

becoming unstable if coupled to an electromagnetic field, which, in the model,

is represented by a continuous field. Thus, let us consider a Hilbert space *
with a basis { | 1 & , | v & }, 0 # v , ` , such that
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^ 1 | 1 & 5 1, ^ 1 | v & 5 0 ^ v | v & 5 d ( v 2 v 8) (5.3.1)

1 5 | 1 & ^ 1 | 1 #
`

0

| v & ^ v | d v (5.3.2)

and a system with free Hamiltonian

H0 5 v 1 | 1 & ^ 1 | 1 #
`

0

| v & ^ v | d v (5.3.3)

and v 1 . 0. Therefore the spectrum of H0 is R+ with a degeneracy at v 1.

Let the interaction Hamiltonian be

H1 5 l #
`

0

g( v )( | 1 & ^ v | 1 | v & ^ 1 | ) d v (5.3.4)

where g ( v ) is an interaction function endowed with all sorts of nice properties;

it is analytic, well behaved at v ª 1 ` , and so on. The total Hamiltonian is

H 5 H0 1 HI (5.3.5)

This Hamiltonian can be diagonalized using standard techniques. We then

obtain

H 5 #
`

0

v | v , ret
adv

& ^ v ,ret
adv

| d v (5.3.6)

where { | v , ret
adv

& } are the usual retarded or advanced bases (Bohm, 1979). We

can see, comparing (5.3.3) and (5.3.6), that the interaction has erased the

discrete component of the spectrum. In fact, state | 1 & has became unstable

and now it is simply a pole in the corresponding S-matrix. In any case, by

using (5.3.6), we can compute the time evolution of any state, for example

the state | 1 & at t 5 0. As we have just said, the state | 1 & of the free system
(5.3.2) is transformed into an unstable state by the interaction (5.3.4) in such

a way that the survival probability P (t) 5 | ^ 1 | 1(t) & | 2 vanishes when t ª 1 ` .

It is also known that P (t) has a vanishing derivative when t 5 0 (Zeno

effect), then a decreasing exponential behavior, and finally oscillates for large

t (the Khalfin effect) (Fig. 3) (Sudarsham et al., 1978).

5.3.2. Hilbert and Rigged Spaces

Let us put aside for the moment the problem of the unification of

dynamics and thermodynamics, and let us introduce some equations related

to the problem of time asymmetry, as stated in Section 1.1. As we will see,

the previous equations are all we need to define the quantum arrow of time
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Fig. 3. The P (t) graph, showing the Zeno effect, the exponential behavior, and the

Khalfin effect.

according to the coarse-graining school. As this school always works within

Hilbert space *, the following property holds:

K: * ª * (5.3.7)

On the other hand, for the extended dynamics school we need a richer

structure. In fact, we need to define two convenient subspaces f 6 , *. To

do so, let us consider a vector | w & P * and its components ^ v | w & , and let us

promote the real energy v to a complex variable z. Then

| w & P f 6 iif ^ z | w & P u (H 2
6 ù S) (5.3.8)

where H 2
6 are the Hardy classes from above and below, respectively (cf.

Section 5.5) and S is the Schwarz class of functions. It can be proved that

f 6 are nuclear spaces. Then we can define two Gel’ fand triplets:

f 2 , * , f 3
2 (5.3.9)

f + , * , f 3
1 (5.3.10)

5.3.3. The Rigged Hilbert Space Formalism

Using analytical continuation techniques Castagnino et al., 1996; Sudars-
ham et al., 1978; Antoniou and Prigogine, 1979; Bohm, 1979), essentially

just Cauchy’ s theorem, it is possible to obtain a new spectral decomposition

of the identity operator 1 and the Hamiltonian operator H as

1 5 | z1, 2 & ^ z1, 1 | 1 # G

| z, 2 & ^ z, 1 | dz (5.3.11)

H 5 z1 | z1, 2 & ^ z1, 1 | 1 # G

z | z, 2 & ^ z, 1 | dz (5.3.12)
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Fig. 4. The G curve.

where | z1, 2 & P f 3
1 , | z1, 1 & P f 3

2 , z1 is a complex rot of the equation a (z)
5 0, where

a (z) 5 z 2 v 1 1 l # G

g*(z*)g(z)

z 2 v 1

dz (5.3.13)

and G is any curve going from the origin of the complex plane to positive

infinity on the real axis and passing below z1 (Fig. 4). The first terms of

equations (5.3.11) and (5.3.12) are produced by the residues of the poles

corresponding to the roots located at the zeros of equation a (z) 5 0, or, in
other words, the poles of the S-matrix. We can see that the discrete component

of the spectrum, which we have lost in (5.3.6), reappears in (5.3.12) in the

form of a matrix of the rigged Hilbert space. There are several possibilities

for choosing the curve G , which vary from author to author: (i) A generic

curve G . (ii) The curve G 8 of Fig. 5, used in such a way that, as the vertical

paths of the curve are mutually canceled, we are mostly integrating on the
real positive axis. (iii) To use the negative real axis as integration path. (iv)

(Defining a tilde operation as

# G

f (z)g(z) dz 5 #
`

0

fÄ(x)g(x) dx

for all g (x) in the test function space. In this case the complex integral

Fig. 5. The G 8 curve.
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formally becomes a real one. If we use this last method and forget the tilde,

(5.3.12) reads

H 5 z1 | z1, 2 & ^ z1, 1 | 1 #
`

0

v | v , 2 & ^ v , 1 | d v (5.3.128)

So we have built a basis { | z1, 2 & , | v , 2 & } for the space f 2 [see Antoniou

and Prigogine (1979) for details]. These vectors read

| z1 2 & 5 ^ 1 | z1, 2 & ( | 1 & 1 l #
`

0

d v
g( v )

[z1 2 v ] 2
| v & ) (5.3.129)

| v , 2 & 5 | v & 1
l g( v )

a ( v )
( | 1 & 1 l #

`

0

d v 8
g( v )

v 2 v 8 1 i e
| v 8 & ) (5.3.12 - )

where the subscript minus sign in the denominator of the integral in (5.3.129)
means that the curve G 8 must be used for the integration. Now we have two

spectra to compare: (5.3.5) and (5.3.129). The main difference is that (5.3.5)

is structurally unstable when l ª 0, while (5.3.129) is stable. In fact, an

algorithm is called structurally stable if it changes only slightly under small

changes of the coefficients. When l 5 0, the spectral decomposition of H
is (5.3.3). If l is small, a small change of l that makes l 5 0 produces a
big change in the usual decomposition, which goes from (5.3.5), with no

discrete term, to (5.3.3) with the discrete term v 1 | 1 & ^ 1 | . The sudden vanishing

of this term when l ª 0 is a catastrophe (specifically a PoincareÂcatastrophe)

which leads to many problems if we try to perform an expansion around l
5 0 in Hilbert (or Liouville) space. On the contrary, (5.3.129) is stable, since
it has the term z1 | z1, 2 & ^ z1, 1 | which goes to v 1 | & ^ 1 | when l ª 0, as we

shall see. From (5.3.12) it can be seen that | z1, 2 & and ^ z1, 1 | are respectively

the left and right eigenvectors of H corresponding to the eigenvalue z1. It

can be proved that

^ z1, 1 | z1, 2 & 5 1

^ z, 1 | z, 2 & 5 0 (5.3.14)

^ z, 1 | z1, 2 & 5 0

^ z, 1 | z, 2 8 & 5 d (z 2 z8)

It can also be proved that

^ z1, 2 | z1, 2 & 5 0

^ z1, 1 | z1, 1 & 5 0 (5.3.148)

namely there are nonnull vectors of zero ª normº in spaces f 3
1 and f 3

2



Dynamics, Thermodynamics, and Time Asymmetry 1385

(Castagnino et al., 1997). Let us call z1 5 b 1 2 (i/2) g 1, where g 1 . 0. Then

from (5.3.128) we can obtain the time evolution of | z1(t), 2 & and | z1(t), 1 & :

| z1(t), 2 & 5 e 2 ix1t | z1(0), 2 & 5 e 2 i b 1te 2 ( t 1/2)t | z1(0), 2 &

| z (t), 1 & 5 e 2 iz*
1t | z1(0), 1 & 5 e 2 i b 1t e ( t 1/2) t | z1(0), 1 & (5.3.15)

These equations show that | z1(t), 2 & is a decaying state whereas | z1(t), 1 &
is a growing state. It can be proved that (Castagnino et al., 1996)

K | z1, 2 & 5 | z1, 1 & (5.3.16)

K | z1, 1 & 5 | z1, 2 &

which is natural, since growing states must be transformed into decaying

states by the time-inversion operator and vice versa. It can also be proved that

K: f x
2 ª f x

1 (5.3.17)

K: f x1 ª f x
2

The following limits are valid [cf. (5.3.129)]:

lim
l ª̀

| z1, 2 & 5 lim
l ª `

| z1, 1 & 5 | 1 & (5.3.18)

Therefore | z1, 2 & and | z1, 1 & can be considered as versions of the unstable

state | 1 & in spaces f 3
1 and f 3

2 . In fact, the difference between these vectors
and | 1 & is O( l ), since when l 5 0, the interaction disappears. Let us remember

that the survival probability of state | 1(t) & was

P (t) 5 | ^ 1 | 1(t) & | 2 5 ^ 1 | 1(t) & ^ 1(t) | 1 & (5.3.19)

P (t) shows the initial Zeno effect behavior, then an exponential behavior,

and finally the oscillatory Khalfin effect behavior. If we make the substitution

| 1(t) & ª | z1(t), 2 & , we obtain

P (t) ª P8(t) 5 ^ 1 | z1(t), 2 & ^ z1(t), 2 | & 5 e 2 g 1t (5.3.20)

and only the exponential behavior remains. Thus the physical nature of the

state | z1, 2 & would be that of a decaying unstable ideal state, where we have

eliminated the Zeno and Khalfin effects, since these effects are contained in

the last term on the rhs of (5.3.129) (also called ª the backgroundº ). Specifi-
cally, the three effects are mixed if we use the time evolution based on (5.3.6),

but Zeno and Khalfin effects can be detached from the exponential behavior

if we use the evolution based on (5.3.12). Equation (5.3.20) also shows that

g 2 1
1 is the mean lifetime of the unstable states. Extended dynamics can be

thought of as an approximation to real states which eliminates the unimportant
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Zeno and Khalfin effects. The Zeno effect is unimportant because it takes

place at t 5 0 whereas we are usually interested in the phenomena at t ª 0.

However, as we said in the introduction, it is not completely clear if these
ideal exponential states are merely mathematically useful, effective states or

real physical states. Furthermore, the extended dynamics school needs to

work with rigged Hilbert spaces f 3
2 and f 3

1 to solve the problem of the

arrow of time, as we shall see in the next section. The Friedrichs model is

only an example, but its rigged Hilbert space structure can be found in every

scattering process (Bohm, 1979). Therefore, even if we base our reasoning
only on this model, what we explain below is rather general.

5.3.4. Mixed States

Let us now introduce the arguments of the next subsection by writing

the evolution equations of mixed states in our model. A mixed arbitrary state
at time t 5 0 can be expanded in a basis { | v , ret & }, as

r 5 # #
`

0

r v v 8 | v , ret & ^ v 8, ret d v (5.3.21)

and its time evolution reads

r (t) 5 # #
`

0

r v v 8 e 2 i( v 2 v 8)t | v , ret & ^ v 8, ret d v (5.3.22)

We could just as well use the advanced basis, but this is all we can say in

space *. In space f 3
1 , however, we can use the basis { | z1, 2 & , | v , 2 & }

[introduced in (5.3.128)] and expand r as

r 5 r 11 | z1, 2 & ^ z1, 2 | 1 #
`

0

( r 1 v | z1, 2 & ^ v , 2 |

1 r v 1 | v , 2 & ^ z1, 2 | ) d v (5.3.23)

1 # #
`

0

r Ä v v 8 | v , 2 & ^ v , 2 | d v

and its time evolution reads

r (t) 5 r
*
(t) 1 e 2 g 1t/2 r 1(t) 1 e 2 g 1t r 2(t) (5.3.24)

where

r
*
(t) 5 # #

`

0

r Ä v v 8 e 2 i( v 2 v 8)t | v , 2 & ^ v 8, 2 | d v (5.3.25)

and
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r 1(t) 5 #
`

0

( r 1 v e 2 i( u 1 2 v )t | z1, 2 & ^ v , 2 |

1 r v 1e
2 i( v 2 b 1)t | v , 2 & ^ z1, 2 | ) d v (5.3.26)

r 2(t) 5 r 11 | z1, 2 & ^ z1, 2 | (5.3.27)

Now since g 1 . 0, r 1(t) oscillates, and r 2(t) is time invariant, we have

lim
tª `

( r (t) 2 r
*
(t)) 5 0 (5.3.28)

which seems very close to the strong limit we are looking for. The only

problem is that r
*
(t) is not a dynamical equilibrium state, since it oscillates.

Nevertheless from the thermodynamic point of view r
*
(t) is a thermodynamic

equilibrium state, since it has a constant (and maximum) Gibbs entropy. In

fact, it is evident (from the quantum version of Theorem 3.6.2) that the Gibbs
entropy is constant for the time evolution (5.3.22), and therefore it is constant

for the time evolution (5.3.25), which is similar. It is clear that that is all we

can ask of the model, since the field cannot go to dynamical equilibrium

because the modes of the field are decoupled. Therefore, from the thermody-

namic point of view, (5.3.28) reads

lim
tª̀

r (t) 5 r
*

(5.3.29)

and it is the strong limit we are looking for. As in the case of equation

(4.5.1.11), this limit belongs to the corresponding rigged Hilbert space. What

was the miracle which allowed us to pass from the oscillatory evolution

(5.3.22) with no limit to the partially damped evolution (5.3.24) with a
thermodynamic limit? It was the fact that (5.3.22) is valid in space + 5
* 3 *, while (5.3.24) is valid in space F 3

1 5 f 3
1 3 f 3

1 , so that (5.3.28) is

actually a functional equation which may be interpreted as

lim
tª `

( r (t) | O 2 ) 5 ( r
*
| O 2 (5.3.30)

where O 2 is an operator of the test operator space F + 5 f + 3 f 1 , the space

of chosen measurement operators. Therefore this miracle happens simply

because we have chosen a convenient test space for our physical measurement

apparatus. Equation (5.3.30) is a weak limit, similar to that of mixing classical
states, and, since our model has a continuous spectrum, a consequence of

Theorem 5.2.1. We will continue this line of reasoning once the more complete

example in the next subsection has been introduced. In the practical case

which will be studied in Section 8, the field | v & will be the thermic radiation

field within the universe, which we can consider as being thermalized from



1388 Castagnino and Gunzig

its beginning by interactions other than those of equation (5.3.4); it can then

be classically chosen as a Boltzmann thermic distribution function:

r
*

5 ZT 2 1/2e 2 v /T (5.3.31)

where T is the temperature and Z a normalization function, and the damping

terms are produced by nuclear reaction phenomena within the stars, and

g 2 1
1 is the characteristic time of these nuclear reactions. We will use this

model in Section 8.

5.4. The Friedrichs Model for Many Oscillators

We will now introduce a not very realistic physical model, which,

however, is the simplest one for our purpose. Let us consider an infinite

set (or a great number) of uncoupled harmonic oscillators, labeled by v ,
with Hamiltonian

H v 5 v (a ²
v a v 1 1±2 ) (5.4.1)

where a ²
v and a v are respectively the creation and annihilation operators of

the harmonic oscillator. The total Hamiltonian reads

H 5 #
in

0

H v d v (5.4.2)

H v can also be written

H v 5 o
n

H (n)
v (5.4.3)

where

H (n)
v 5 v (n | n, v & ^ n, v | 1 1±2 ) (5.4.4)

| n, v & is the v -oscillator in the n excited state (n 5 0 corresponds to the

ground state). Let us suppose that each of these states is coupled with a field

represented by a set of infinite states | n, v ,w & in such a way that now the

coupled H (n)
v reads

H (n)
v 5 v (n | n, v & ^ n, v | 1 1±2 ) 1 #

`

0

dw | n, v , w & ^ n, v , w |

1 l #
`

0

dw gn, v (w)( | n, v & ^ n, v , w | 1 | n, v , w & ^ n, v | ) (5.4.5)

where l is a coupling constant and gn, v (w) is a coupling function which

necessarily has the property g0, v (w) 5 0, since the ground state of each
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oscillator is stable; it is therefore not coupled with the corresponding field

that would produce its instability. Thus we have constructed a model which

can be considered as an infinite repetition of the Friedrichs model of the last
subsection. In this nonrealistic model the instability of all the states, with

the exception of the ground states, is obtained by coupling a field to each

oscillation mode. It is, in fact, not a particularly economical method, but serves

our purpose, which here is simply to find the laws of unstable evolutions. Now,

using the procedure of the previous subsection in each Friedrichs model of

each mode, we can diagonalize each operator H (n)
v to obtain

H (n)
v 5 z (n)

v ( | n, v , 1 & ^ n, v , 2 | 1 1±2 ) (5.4.6)

where, for simplicity, we have omitted the field term, where z (0)
v 5 1±2 v , since

the ground states are not perturbed, and we have put the factor n inside

z (n)
v , and Im z (n)

v , 0 for n Þ 0. If we renormalize and eliminate the 1/2-

terms, we obtain

H 5 #
`

0
o
n

z (n)
v ( | n, v , 1 & ^ n, v , 2 | d v (5.4.7)

Let us now consider a density matrix r 5 r (0) P + 5 * 3 *, which can

be expanded in the basis { | n, v , 2 & } as

r 5 #
`

0
o
n

r n, n8; v | n, v , 2 & ^ n, v , 2 | d v (5.4.8)

We will always work with these density matrices below. And herein lies the

essential fact. Since | n, v , 2 & P f 3
pl and, therefore, r P f 3

1 3 f 3
1 , what we

have done in choosing the expansion (5.4.8) is to assume that our operator

space is F + 5 f + 3 f + in such a way that now we have the Gel’ fand triplet

F + , + , F 3
1 (5.4.9)

and therefore r P F 3
1 5 f 3

1 3 f 3
1 . In a physical sense, what we are doing

is to postulate that our measurement apparatus correspond to operators in

F 1 . We will discuss this postulate below, but we can immediately see that

this is the price we have to pay to get the strong limit we are looking for
and the corresponding unstable time evolution. In fact, from (5.3.12) we can

obtain the time evolution

r (t) 5 e 2 iLt r (0)

5 #
`

0
o
n

r nn, n8 v exp[ 2 i(z(n)
v 2 z(n8)*v )t] | n, v , 2 & ^ n8, v , 2 | d v (5.4.10)

but since
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2 i (z (n)
v 2 z (n8)*v ) 5 2 i ( b (n)

v 2 b (n8)
v ) 2

i

2
( g (n)

v 2 g (n8)
v ) (5.4.11)

and g (n)
v , g (n8)

v $ 0 (only g (0)
v 5 0), thus

lim
tª̀

r (t) 5 #
`

0
o
n

r 0,0; v | 0, v , 2 & ^ 0, v , 2 | 5 r
*

(5.4.12)

and we have obtained our strong limit, equivalent to (5.2.9). Furthermore,

now we have the time evolution to this limit, (5.4.10). To obtain this result,

we have used an infinite set of continuous fields, which has been neglected

in all the formulas above. Somehow we have ª traced awayº these fields. But
the result will not change from the physical point of view if we include all

these fields. The result we have obtained regarding the states of the harmonic

oscillator will be the same; these oscillators reach equilibrium, evident in the

last equation, but the fields will continue to oscillate and they always will

be far from equilibrium (as in the last part of the last subsection). This is

not surprising, since these fields have no self-interaction or mutual interaction,
and therefore they cannot reach equilibrium. Thus to neglect these fields was

merely a useful shorthand with no physical consequences (bearing in mind

the caveats of the last part of the last subsection). We must also remember

that the quantities of (5.4.12) are just functionals over the space F +. Thus,

if we contract this equation with any vector of this space, we will find the

weak version of the limit (5.4.12), showing that in this example Theorem
5.2.1 is fulfilled. If we collectively denote by 2 g all the g ’ s, or 2 g is the

inverse of the characteristic lifetime of the system, or if we call 2 g the smaller

of them to maintain the leading term only, (5.4.11) reads

r (t) 5 r
*

1 r 1e
2 g t (5.4.13)

As usual we have

tr r 5 tr r
*

5 1 (5.4.14)

since the matrix r is the usual one, the matrix r
*

is an expansion of stable

states (5.4.12), and the norm must be conserved (cf. Appendix 5.B). But

tr r 1 5 0 (5.4.15)

as a consequence of (5.3.148), showing that this matrix is something like a

fluctuation around the equilibrium state. Let us finally observe that in this
model we cannot pretend that r

*
would be the equilibrium state of the

canonical ensemble. To obtain that result, obviously we must couple the

oscillators among themselves and the model necessarily will be much more

complicated. To mimic a canonical ensemble at temperature T in this model,

the best we can do is to make the following choice:
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r 0,0; v 5
Z

T3/2 e 2 v /T (5.4.16)

With this choice we have the correct equilibrium distribution and the field

produces the irreversible evolution toward this equilibrium. The evolution

of r (t) then reads

r (t) 5 #
`

0 F Z

T 3/2 e 2 v /T r ( v )

*
1 e 2 2 g tf ( v ) r ( v )

1 G d v (5.4.17)

where f ( v ) is an arbitrary function, so the conclusions are essentially the

same as in the last subsection.

5.5. Appendix 5A. Hardy Class Functions (Bohm and Gadella, 1989)

A complex function f ( v ) on R + is a Hardy class function from above

(below) if (i) f ( v ) is the boundary value of a function f (z) of the complex

variable z 5 x 1 iy which is analytic in the half-plane y . 0 ( y , 0); (ii)

* 1 `
2 ` | f (x 1 iy | 2 dx , k , ` , for all y with 0 , y , ` ( 2 ` , y , 0).

5.6. Appendix 5B. Computation and Conservation of Norm, Trace,
and Energy

The trace of a density matrix r is

tr r 5 #
`

0

^ v , ret | r | v , ret & d v (5.B.1)

and is invariant under changes of basis. Repeating the procedure we used to

go from (5.3.6) to (5.3.12), we can obtain

tr r 5 ^ z1, 1 | r | z1, 2 & 1 #
`

0

^ v , 1 | r | v , 2 & d v (5.B.2)

As the extended dynamics theory deals with states which vanish when t ª
` , one might be concerned about the conservation of norms, traces, or energy

in this theory. There is actually no problem, since we can state the following

results. (i) From (5.3.14) and (5.3.148) we see that unstable density matrices

such as | z1, 2 & ^ z1 2 | or | z1, 1 & ^ z1, 1 | have null trace; this is possible since

we are not working in Hilbert space. (ii) Using (5.3.15) and (5.3.148), we
can see that the trace of (5.B.2) is conserved as the usual trace of (5.B.1).

(iii) If the trace is conserved, the norm of pure states is also conserved. (iv)

The mean value of the energy in one of these unstable states such as | z1, 2 & ^ z1,

2 | reads



1392 Castagnino and Gunzig

^ H & 5 ^ z1, 2 | H | z1, 2 & 5 z1 ^ z1, 2 | z1, 2 & 5 0 (5.B.3)

and therefore the energy of the states vanishes when t ª ` is zero, creating

no problems with energy conservation.

6. COURSE GRAINING AND TRACE. TIME ASYMMETRY

6.1. Coarse Graining

Let us return, for a while, to the classical regime. Usually coarse-graining

is based on the fact that the dynamical variables cannot be measured with

infinite precision, i.e., there is always some error and, furthermore, we cannot

compute with an infinite number of digits. There may also be a fundamental
graininess in nature, but this graininess has not yet been found, either theoreti-

cally or experimentally. Coarse-graining may be introduced by partitioning

the space X into a finite (or discrete) number of cells Ai satisfying

ø
i

Ai 5 X, Ai ù Aj 5 é if i Þ j (6.1.1);

This partition is arbitrary, but it must be nontrivial with respect to some
measure m , namely

0 , m (Ai) , m (X ) (6.1.2)

for all values of i. For every density r within each cell Ai of the partition,

we can compute the average of r as

^ r & i 5
1

m (Ai) # A i

r (x) m (dx) (6.1.3)

and the coarse-grained density with respect to the partition is given by

r Ä (x) 5 o
i

^ r & i 1Ai(x) 5 H o i

1

m (A i)
| 1Ai)(1Ai | H | r ) 5 P r (x) (6.1.4)

where 1A i is the characteristic function of the cell A i and P is the projector

defined by the partition. P is a projector since

P 2 5 F o
i

1

m (Ai)
| 1A i)(1Ai | G F o

j

1

m (A j)
| 1Aj)(1Aj | G

5 o
ij

1

m (A i)

1

m (Aj)
| 1Ai)(1Aj | m (Ai) d ij

5 o
i

1

m (A i)
| 1Ai)(1Ai | 5 P
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Following our reasoning in the introduction, or from Theorem 4.3.1, we can

deduce the following result in the case of a finite number partitions (for a

discrete number see Lebowitz (1994):

Theorem 6.1.1. If Pt is a r
*
-mixing Markov operator with a unique

stationary density r
*

and {A i} is a nontrivial partition of the phase space
X, then

lim
tª̀

(Pt r ) , 5 lim
tª̀

r Ä
*

(6.1.5)

for all initial densities.

Thus we have obtained our coarse-graining strong limit. Now we can

consider the transformation

P
Ä t r Ä (x) 5 (P t r (x)) , (6.1.6)

From (6.1.5) we see that this transformation has a strong limit (i.e., in the

norm) and therefore, according to Theorem 4.4.1, it is exact. Then, by using
Theorem 4.4.2, we can conclude the following about the entropy:

Theorem 6.1.2. If P t is a reversible r
*
-mixing Markov operator with a

unique stationary density r
*
, and {Ai} is a nontrivial partition of the phase

space X, then

lim
tª̀

HC((Pt r (t)) , | r Ä
*
) 5 0 (6.1.7)

for all initial densities r .

But we must realize that the way in which the conditional entropy
converges to zero depends on the way in which the coarse-graining is carried

out (Lasota and Mackey, 1985). It can be proved that the rate of convergence

of entropy to equilibrium slows as the measurement techniques improve and

the coarse-graining becomes finer (!!!). Such phenomena have not been

observed. Thus it is most unlikely that trivial coarse-graining plays a role in

determining thermodynamic behavior; if a natural graininess, it is not found.
Candidates for this natural and universal graininess would be: (i) The graini-

ness produced by operators P Ä and P Ã, which are introduced using extended

dynamics methods (Castagnino et al., 1996; Balescu, 1975). However, this

is really only the old, coarse-graining version of the extended dynamics

method. (ii) The graininess introduced by the universe event horizon (Hu et
al., 1992b). (iii) The graininess introduced by Planck’ s constant; e.g., it

appears to be absolutely impossible to measure lengths smaller than the

Planck length; the physics related to this graininess is still a subject of intense

research, however. More general projectors than those defined in (6.1.4) can

be used, as we have seen in the introduction, since any projector will do the
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job done in (1.2.1.2) and (1.2.1.3). A theory that uses one of these generalized

projectors will also be called, by extension, a ª coarse-grainingº theory.

Coarse-graining can be also used in the quantum case. Then P is a projector
over the quantum Liouville space + 5 * J *. Using the quantum Theorem

5.2.1, we can obtain the same results as in the classical case, where we used

Theorem 4.3.1.

6.2. Time Asymmetry in Coarse-Graining Theories

All the limits of the previous section were computed as t ª 1 ` . But it
is clear that all of these limits are also valid when t ª 2 ` . Therefore in

coarse-graining theories there is equilibrium both in the far past and the far

future. This fact can easily be verified with the baker’ s transformation, where

we have a set of infinite lines, horizontal for the far future and vertical for

the far past, which will be taken to have a uniform equilibrium distribution
function for any coarse-graining partition. It is also evident that, if the initial

distribution function has an adequate symmetry, for example, that of the

characteristic function of a square domain, the evolutions toward the past

and toward the future will be strictly symmetric. But this will not be the

case if the initial distribution function is not symmetric [other calculations

concerning the baker ’ s transformation behavior can be found in Lasota and
Mackey (1985)].

Continuing to the quantum case, we see a quite similar phenomena,

even with no coarse-graining. Let us consider the state | 1 & of the Friedrichs

model (which can be considered as a symmetric initial condition, as the

characteristic function of a square domain, in the case of the baker ’ s transfor-

mation). The behavior of the survival probability P (t), as shown in Fig. 3,
is completely symmetric with respect to t 5 0. Thus, classically, if we use

coarse-graining techniques, or quantum mechanically, if we use only states

of the Hilbert space, then we will find that the past is only conventionally

different than the future. How, then, may we distinguish past from future?

The answer is by the method which was explained in the introduction: Take

the time t 5 0. Consider the set of evolutions of the system for t . 0 (for
all possible initial conditions) and let us call it * 2 in the quantum case (or

+ 2 in the classical case). It is identical to the set of evolutions for t , 0

(for all possible initial conditions), which we will call *+ (or ++). The

existence T or K of the mathematical transformation relating the future with

the past evolutions shows that these sets of evolutions are identical:

Theorem 6.2.1. For every evolution r (t) P + 2 (t . 0) there is a time-

symmetric evolution r ( 2 t) P ++ (t , 0) if the evolution equation is reversible.

Proof. From the definition of a reversible evolution (2.3.21), for every

r (t) P + 2 there is a physical evolution r ( 2 t) P ++ defined by
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r ( 2 t) 5 _ r (t), t . 0 QED

We also have

T: + 2 ª ++, T: ++ ª + 2

These two sets of evolutions + 2 , ++ (or * 2 , *+) are the two mathematical

structures introduced in Section 1.1. Since they are identical [cf. equation

(6.2.2)] it is irrelevant which one we choose. So let us choose just one of

these structures to build our theory, say + 2 , and discard the other. Now we
can say that the theory begins at t 5 0 and goes toward the future for t .
0 (or toward the past, since the choice of one word or the other is just as

conventional as the choice between + 2 and ++). It is evident that this theory

developed in the period 0 # t , ` will fulfill all our requirements, provided
that we forget about the period 2 ` , t # 0. These are the characteristics

of the resulting theory if we use coarse-graining and usual Hilbert-space
quantum states. Even if successful in many respects, it does admittedly make

one a little uneasy.

6.3. Traces

Let us now consider only the classical case. Let X and Y be two topologi-

cal Hausdorff phase spaces, w : Y ª X a given continuous function on X, and
St: Y ª Y a dynamical system operating in phase space Y. A function h: R ª
X is a trace of the dynamical system if there is a point y in space Y such that

h (t) 5 w (St( y)) for all times t (this usage of the word trace should not be

confused with that referring to the trace of a matrix). It can be proved that

every continuous function in a space X is the trace of a single dynamical

system operating in a phase space Y, and thus we find the following quite
surprising result:

Theorem 6.3.1 Lasota and Mackey. (1985). Let the phase space X be an

arbitrary, but topological, Hausdorff space. Then there is a second phase

space Y, also topological and Hausdorff, a dynamical system St operating in
Y, and a continuous function w : Y ª X such that every continuous function

h: R ª X is the trace of St. [A topological space is Hausdorff (or separable)

if any two distinct points possess disjoint neighborhood s.]

That is, for every h there is a point y in phase space Y such that h (t)
5 w (St( y)), for all times t. Let us now consider the trajectories of a dynamical
system: if we have a dynamical system St operating in a phase space Y, then

only three possible types of trajectories can be observed: (i) The trajectory

is a fixed point x
*

such that Stx*
5 x

*
for all t. (ii) The trajectory is a

nonintersecting curve, with the property St(x) Þ St8(x) if t Þ t8. (iii) A periodic

trajectory such that St(x) 5 St 1 T (x), for all times t, with T the period. Nothing,
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however, prevents the existence of nonperiodic intersecting trajectories h (t)
in space X if w : Y ª X. Thus we can demonstrate:

Theorem 6.3.2. Let the phase spaces X and Y be topological Hausdorff

spaces and h: R ª X an intersecting and nonperiodic trace of a dynamical

system St : Y ª Y. Then the entropy of densities evolving under the action

of h is either constant or increasing.

Proof. The proof is based on the trivial observation that if h is intersecting

and nonperiodic, then at every intersection point x on the trajectory h the

inverse h 2 1(x) is not unique. Therefore the trace h is the trajectory of a

semidynamical system, and, since semidynamical systems are irreversible,

from Theorems 3.6.1 and 3.6.2, the entropy is either constant or
increasing. QED

Thus the simple act of trace, taking a trace of a dynamical system (with

time-constant entropy), may be sufficient to generate a system in which the

entropy is increasing. For certain classes of traces, however, much more can
be said. Let X and Y be two different phase spaces with normalizable measures

m
*

and n
*

and associated densities r
*

and s
*
, respectively, and let Tt : X ª

X and St : Y ª Y be two measure-preserving transformations. If there is a

transformation w : Y ª X which is also measure preserving, i.e., if

n
*
( w 2 1(A )) 5 m

*
(A ) (6.3.1)

for all subsets A of the phase space Y such that Tt + w 5 w + St , then Tt is

called a factor of St . From this definition the trajectory of the factor Tt is a

trace of the system St. Then we have the following:

Theorem 6.3.3 (Rochlin, 1969). Every r
*
-exact transformation is the

factor of a Kolmogorov automorphism.

This theorem indicates precisely what we must do if we want to find

an exact transformation with all its nice properties: (i) We must show that
the system we are working with is a Kolmogorov system. This can be difficult

from the mathematical point of view, but as chaos is very frequent in nature,

it is not a very restrictive physical condition. (ii) Then, according to Theorem

6.3.3, every measure-preserving factor will produce an exact transformation.

The problem is simply to find the most convenient one. As an example, let
us again consider the baker’ s transformation. It can be proved that this

transformation is a Kolmogorov automorphism, endowed with a constant

entropy. However, the system corresponding to coordinate x is a factor of the

baker ’ s transformation. Also, it is identical to the dyadic Renyi transformation:

T (x) 5 2x (mod 1) (6.3.2)

which is uniformly exact and whose entropy smoothly increases to zero by

Theorem 4.4.2.
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We have shown that coarse-graining produces no substantial difference

between past and future. This is not the case with traces, as we can see from

the baker’ s transformation, in which that x side of a parallelogram will always
increase toward the future and decrease toward the past. Thus, coarse-graining

does not produce time asymmetry, whereas traces do produce this phenome-

non. Let us now summarize the entire picture: We have projectors P such

as those introduced in Section 6.1, namely

P : +Y ª +X , P 2 5 P (6.3.3)

where +Y 5 + is the state space and +X is the space of relevant states. P
does not have an inverse P 2 1, since P 2 P 2 1 5 P P 2 1 yields P 5 1. We

have traces

w : Y ª X (6.3.4)

which map between phase spaces. w can have an inverse, and in this case

w (Y ) is dense in X, or it does not have an inverse when the dimension of X
is smaller than the dimension of Y, for example, in the case of (6.3.2). Finally,

let us remark that traces define a mapping in the corresponding Liouville

spaces. Let +X and +Y be the Liouville spaces corresponding to the phase

spaces X and Y. Then to the mapping w : Y ª X corresponds the mapping

L 2 1: +Y ª +X (6.3.5)

(the 2 1 is just a matter of convention) defined by

L 2 1 r ( y) 5 r ( w 2 1(x)) (6.3.6)

In the next subsection we will study even more general mappings.

6.4. Generalized Traces

In Section 6.3 we were forced to work only in the classical case, since

we used phase space. We would now like to generalize the trace notion in

order to be able to also consider the quantum case. A generalized trace is
given by (6.3.3) if (6.3.4) is not fulfilled; i.e., it is a mapping between

Liouville spaces not originated by a mapping between phase spaces. As it is

a mapping like (6.3.3), it is similar to a ª projector with an inverse.º But now

spaces +Y and +X can be classical or quantum Liouville spaces. These

generalized traces are typical of the extended dynamics formalism, and

attempt to show it as a kind of generalization of the coarse-graining one. Let
us consider the particular case +Y 5 F 3

1 , +X 5 +. Let us also consider the

basis { | 1 & , | v & } of (5.3.1), which we shall call { | i & }, and such that H | i & 5
zi | i & , zi P C. Let us define the basis { | ij )}, | ij ) 5 | i & ^ j | . Let us also consider

the basis { | z1, 2 & , | w , 2 & } of (5.3.23), which we will call { | i, 2 & }, and, in
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the same fashion, let us define the basis { | ij, 2 )}, | ij, 2 ) 5 | i, 2 & ^ j, 2 | .
Using the basis { | z1, 1 & , | v , 1 & }, we can, in addition, define a basis { | ij,
1 )}. We can then define a generalized trace as

L 2 1: F 3
1 ª + (6.4.1)

L 5 o
ij

| ij, 2 )(ij | , L 2 1 5 o
ij

| ij )(ij, 1 | (6.4.2)

In other words, L is the transformation which describes the correspondence

of each state r of space + to a functional in space F 3
1 . L looks like just a

ª change of basis.º But L is actually much more than a change of coordinates,

since it takes vectors in one space to vectors in another. Therefore to weak

limits in + correspond strong limits in F 3
1 and the generalized trace L

embodies the solution of our problem: going from weak limits to strong

limits can be considered as the symbol which synthesizes the fine-graining

technique.

Some observations are in order:

(i) Since L is a generalized trace, therefore, as a trace, it contains time

asymmetry. In fact, L defined in (6.4.1) is related to damping phenomena
which produce equilibrium toward the future, and should be called L +. We

can also define a L 2 related to creation phenomena implying equilibrium in

the far past, namely

L 2 : F 3
2 ª + (6.4.3)

L 2 5 o
ij

| ij, 1 ) (ij | , L 2 1
2 5 o

ij

| ij )(ij, 1 | (6.4.4)

If we choose L 2 rather than L +, we are creating also a time asymmetry. In

order to see the relation of the two L ’ s, let us introduce the star conjugation

A* 5 _ A ² _ ² (6.4.5)

Then it is easy to see that

L + 5 L *2 , L 2 5 L *1 (6.4.6)

L 2 L *2 5 L + L *1 5 1, L 2 1
2 5 L *2 5 L +, L 2 1

1 5 L *1 5 L 2 (6.4.7)

For these last equations we can say that the L ’ s are star-unitary.

(ii) Using the generalized trace L , we do not lose any information. [In
the case of usual traces we lose information if dim X , dim Y, as in the

example of the baker ’ s transformation before, (6.3.2), but in the case of the

L trace the dimension of the two spaces is the same and + is dense in

F 3
1 ]. However, it can be demonstrated that this generalized trace L somehow
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renormalizes the infinite amount of information contained in + (Ordon
Ä
ez,

1997).

(iii) A generalized trace is not a trace, so there is not a mapping in the
corresponding phase spaces linking corresponding trajectories. In this sense,

in using extended dynamics techniques, trajectories lose all their importance

and even have no meaning Prigogine and Petrosky, 1993; Prigogine, 1993).

(iv) The L trace allows us to define a Hilbert space in which the time

evolution is irreversible. In fact, using the bases we have introduced, we can

deduce that

1 5 o
ij

| ij, 2 )(ij, 1 | (6.4.8)

L 5 o
ij

; (zi 2 z *j ) | ij, 2 )(ij, 1 | (6.4.9)

whereas Im zi 5 2 g i /2 , 0, we have Im(zi 2 z *j ) # 0. The time evolution
operator is U (t) 5 e 2 iLt and UU ² 5 1, i.e., U is unitary. Let us now define

a modified Liouvillian:

G 5 L *L L 5 o
ij

(zi 2 z *j ) | ij )(ij | (6.4.10)

which induces an evolution W (t) 5 e 2 iGt such that WW ² Þ 1, and therefore

is not unitary, but star-unitary, WW * 5 1. The two evolution are related by

W (t) 5 L *U (t) L (6.4.11)

We can also define L -density matrices as being related by the L -trace (6.4.1):

r L (t) 5 L * r (t), r (t) 5 L r L (t) (6.4.12)

where r (t) P F 3
1 , r L (t) P +, which evolves as

r (t) 5 U(t) r (0), r L (t) 5 W (t) r L (0) (6.4.13)

Equation (5.3.24), translated into the r L language, read

r L (t) 5 r L * 1 e 2 g 1t/2 r L 1(t) 1 e 2 g 1t r L 2(t) (6.4.138)

which can also be obtained from equation (6.4.13), since the r L (t) evolves

under the action of the operator e 2 iGt and G has complex eigenvalues [cf.

(6.4.11]. Then the space F 3
1 of the r ’s can be considered as an ideal reversible

world of reversible equations, namely the ideal world of Newton, endowed

with unitary evolutions [David Bohm would say that this is the space of
implicate order (Ordon

Ä
ez, 1997)], while the space + of the r D is the real,

physical, irreversible world of Boltzmann, endowed with nonunitary evolution

[just star-unitary; David Bohm would say that this is the space of explicate

order (Ordon
Ä
ez, 1997)]. L establishes a canonical mapping between these
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two worlds [David Bohm would say a ª metamorphosisº (Ordon
Ä
ez, 1997)].

Even if the r D ’s live in the ordinary Liouville space, they evolve with a

nonunitary law [cf. (6.4.13)], so that the L -trace achieves the dream of
physicists: it creates an ordinary Hilbert space where the evolutions are

nonunitary and irreversible. Precisely, the essence of the fine-graining formal-

ism was to maintain the time-symmetric primitive equations [with operator

evolution U (t)] and to obtain time asymmetry by choosing a typical time-

asymmetric space +Y 5 f 3
1 . The L -trace exchanges these roles. We get a

time-asymmetric equation [with evolution W (t)] in a time-symmetric space
+ as in the coarse-graining case. But of course the physics remains the same.

(v) Using the L , Lyapunov variables can be found very easily, since

( r (t) | r (t)) 5 ( r (0) | U ² U | r (0)) 5 ( r (0) | r (0)) 5 const (6.4.14)

therefore it is not a Lyapunov variable, but

Y 5 ( r L (t) | r L (t)) 5 ( r L (t) | W ² W | r L (0)) 5 var (6.4.15)

or

Y 5 ( r (t) | ( L *) ² L * | r (t)) 5 ( r (t) | M | r (t)) 5 var, M 5 ( L *) ² L *

(6.4.158)

Precisely, if

| r L (0)) 5 o
ij

r ij | ij ) (6.4.16)

the corresponding time evolution is

| r L (t) 5 o
ij

r ije
2 i(zi 2 z*

j ) | ij (6.4.17)

But Im(zi 2 z *
j ) 5 2 G ij # 0, so

( r L (t) | r L (t)) 5 o
ij

| r ij | 2e 2 G ijt (6.4.18)

is always decreasing and is therefore a Lyapunov variable. In more general
cases than that of (6.4.1)±(6.4.2), it can be proved that every rigging corres-

ponds to a L -trace and vice versa (Ordon
Ä
ez, 1997).

6.5. Time Asymmetry in Extended Dynamics Theories

Let us begin to compute the conditional entropy HC( r | r *) [cf. equations

(3.6.1) and (3.6.2)] and in the case of the classical evolution (4.5.1.12). [In

the quantum case we have the time evolution (5.4.13).] If we want to use

the classical equation for HC and we have a quantum density matrix, we must
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first transform this quantum matrix to the corresponding classical distribution

function, using (6.A.1). But we can directly use the definition of HC , if we

define the logarithm of a quantum density matrix as the operator whose
eigenvalues are equal to the logarithms of the eigenvalues of the primitive

operator (Landau and Lifshitz, 1958). As the Wigner integral is linear, the

quantum equivalent of (5.4.13) is the same equation. Then

HC( r | r
*
) 5 2 # x

( r
*

1 e 2 g t r 1) log 1 1 1 e 2 g t r 1

r * 2 dx (6.5.1)

Bearing in mind that | r 1 | , , r
*

for t . . g 2 1, we can expand the logarithm

and, since tr r 1 5 0, taking into account (6.A.3), we have

HC( r | r
*
) 5 2 e 2 2 g t # X

r 2
1

r
*

dx (6.5.2)

which is negative, growing, and has a vanishing limit when t ª ` ; so

it has all the properties required to formulate the second law of thermody-

namics in its third-order form. But we have obtained this satisfactory

conclusion because we worked with the operator test function space F +,

and the quantum states belong to space F 3
2 [albeit with some remaining

mathematical problems, since we are computing the log of a vector of a
rigged Hilbert space; these problems can be solved, in principle, if we

use the generalized trace L of the previous section, and if we substitute

the r ’s by r L ’s, since these last density matrices belong to +, so they

can be used without problems, but they retain the evolution properties of

the r ’s, namely the damping factors of (6.5.1) and (6.5.2) as in (6.4.138)].
Then, explicitly, we define

HC( r | r
*
) 5 2 # X

r L log
r L

r L *

dx)

So we can go now to the central problem of the origin of time asymmetry
in extended dynamics theories.

Let us now consider an isolated system which is our universe; we can

know nothing of the exterior of the system and the system cannot interact

with anything outside itself. If the time evolution equations of a theory are

time-symmetric, it is quite impossible to break this symmetry by rigorous

mathematical manipulations; symmetry will always appear one way or
another. Nevertheless, the examples we have given demonstrate that normally

in these theories we can find two extensions of Liouville space +. They are

the rigged Hilbert spaces F 3
2 and F 3

1 which are defined using the test spaces

F 2 and F + (usually these test spaces are nuclear spaces which can be consid-
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ered as the spaces corresponding to the operators of the measurement devices,

as explained in Appendix 4A). Time symmetry implies that these spaces are

related by

_: F 3
2 ª F 3

1 , _: F 3
1 ª F 3

2 (6.5.3)

and that therefore they are identical. To choose one or the other is irrelevant,

as irrelevant as the throw of a die with the same number on each of its faces.

So if we choose one space or the other, the physics does not change. Both

spaces are only conventionally different. Any possible difference could only
occur for the exterior of the system and there is no possibility of interaction

with it. Nevertheless, in each space F 3
2 or F 3

1 , the future is substantially

different from the past, since there is equilibrium in only one of these direc-

tions and we can call this direction the future. In choosing one of the spaces,

we establish a time asymmetry, and we can formulate the second law of

thermodynamics as we have done; our problem is solved (cf. the solution
with the coarse-graining case, which is not so different). We can say the

same when we speak of the choice of the generalized traces L 2 or L + and

work within the Liouville space +, the space of physical states. The same

trick can be done in various different ways:

(i) In Antoniou and Tasaki (1991, 1993a, b) and Antoniou et al. (1995)
two semigroups are defined, each related to a rigged Hilbert space, and one

of these semigroups is arbitrarily chosen. One semigroup is obtained by

expanding the solution of the evolution equation in a basis of F 3
1 ; the evolution

turns out to be well defined for t P ( 2 ` , 1 ` ] and not well defined for t ª
2 ` . The other semigroup has the reverse properties.

(ii) In Balescu (1975) a projector P 2 5 ( i | ii, 2 )(ii, 1 | is defined and
taken to be the projector on the really relevant space. But P + 5 _ P 2 is

identical to P 2 , so that we must choose one or the other as in the previ-

ous cases.

So in all these cases we must make a conventional choice to find

a mathematical structure, a space, semigroup, projector, or whatever, such

that, using this structure, the future exhibits substantially different properties
from the past. One might say that we have not explained time asymmetry,

but have merely introduced it by making an arbitrary choice. To answer

this criticism we must remember that physics never really explains. It

merely finds the mathematical structure most adequate to explaining

physical phenomena; for example, the most adequate mathematical space,

the most adequate mathematical equations, and so on. The curvature of
space-time does not explain gravity, the Riemannian manifold happens to

be the best mathematical structure to deal with gravity. Analogously, it

simply turns out that the most adequate mathematical space to explain

time asymmetry and the second law of thermodynamics is a rigged Hilbert



Dynamics, Thermodynamics, and Time Asymmetry 1403

space, not the usual Hilbert space: So the relevant important choice is
between mathematical structures + and F 3

2 (or equivalently F 3
1 ). The

particular choice from these last two rigged spaces, F 3
2 and F 3

1 , is, on
the contrary, irrelevant and physically unimportant

6.6. Comparison between Extended Dynamics and Coarse-Graining

As we can see, coarse-graining and extended dynamics are very similar.

Both are based on Theorem 4.3.1, which concerns the weak limit of mixing
evolutions. Coarse-graining obtains a strong limit via a projection, extended

dynamics obtains the ª strong limitº using functionals. Both obtain their arrow

of time by defining a pair of time-symmetric structures: (i) The pair + 2 , ++

of t . 0 and t , 0 evolutions in the case of coarse-graining. (ii) The pair

of rigged Hilbert spaces F 3
2 , F 3

1 in the case of fine-graining. In both methods

one of these structures is conventionally chosen. The main weakness of
coarse-graining is that the projector is not defined in a canonical way. The

main weakness of extended dynamics is that we are forced to enlarge the

space, and that we do not know the exact nature of the objects we must

add. Are these ideal unstable states just useful mathematical tools (like the

Fadeev±Popov ghost), or real physical objects? The answer to this question
depends on our point of view when studying the problem. In fact:

(i) Any decaying state was always created by a creation process. The

quantum state corresponding to the creation process followed by decay

belongs to * [like the vector | 1 & of the Friedrichs model with the survival

probability (5.3.19), that of Fig. 3]. Nevertheless, if the lifetime of the

decaying state is very long, we are used to neglecting the creation process
and to considering the state just as a decaying state with exponentially

decaying survival probability [as in (5.3.20)]. This is the state | z1 2 & belonging

to f 3
1 . So the quantum theory, which uses these states, could be considered

as an effective theory where creation process are neglected. We can say the

same for classical theories. In the baker’ s transformation, a regular density

with a regular support will have a creation process and a symmetric decaying
process toward equilibrium in much the same way as state | 1 & . But if we

study the time evolution of a ª horizontal Dirac combº state, we will find

that these ideal states have no creation process, as the state | z2 2 & .
(ii) Nevertheless, what may be merely a useful simplification when

considering states with long lifetime could be a rigorous fact in the case of

the universe, where this process must be necessarily neglected, since we do
not know its creation process.

(iii) So the new unstable states added to physical space are similar to

plane waves; they are eternal objects with no creation process and, in fact,

if we define plane waves in a rigorous way, we need a rigged Hilbert space
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to do it. From this point of view, coarse-graining physicists appear to be

rather stubborn people who work only with waves packets, and refuse to use

plane waves because they ª are not physical objects.º
(iv) If we allow time to go to infinity and we wish to consider the

rigorous equilibrium state at infinite time, this state belongs to F 3
1 as in the

case of the baker’ s transformation, and so we are forced to work with an

extended dynamics theory. But if we content ourselves with approximate

equilibrium states at finite time, arguing that t ª ` is physically impossible,

we do not need these states. Thus the real nature of the new states is open to
discussion. However, an extended-dynamics physicist can take a conservative

attitude and consider the new states simply as idealized states, or just as

useful mathematical devices as are plane waves. Is the choice of the extended

dynamics or coarse-graining just a matter of taste, or there are physical or

mathematical reason to choose one or the other? The reader must decide for

him or herself.

6.7. Appendix 6A: Wigner Function Integral (Balazs and Voros,
1990; Hillery et al.,1984)

We have repeatedly jumped back and forth between the classical and

quantum cases. It is therefore interesting to present a theory to formalize

these jumps and to base some applications on it. Let r be a density matrix

of Liouville space + 5 * 3 * and let { | q & }be the configuration or position

basis of the Hilbert space *. The corresponding Wigner function reads

r w(q, p) 5 p 2 1 # ^ q 1 l | r | q 2 l & e 2i l p d l (6.A.1)

It can be proved that

L r W (q, p) 5 p 2 1 # ^ q 1 l | L r | q 2 l & e 2i l p d l 1 O ( " ) (6.A.2)

where L is respectively the classical and quantum Liouville operator. In the

classical limit, " ª 0, and therefore r W can be considered as the classical

distribution function corresponding to r . As in the classical regime, for

practical reasons, we work in this limit, and we will consider (6.A.1) to be

the relation between the quantum density matrix and the classical distribution
function. In fact, even if r W is not generally positive definite, using the

Wigner integral from the classical equation, we can pass to the quantum

equation and vice versa, as a few examples will show. For example, let us

observe that
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| r W | 5 # # r W (q, p) dq dp

5 # dq # ^ q 1 l | r | q 2 l & d ( l ) d l 5 tr r (6.A.3)

so the quantum trace corresponds to the classical norm. Also

( r W | OW) 5 # # r W (q, p)OW (q, p) dq dp

5 p 2 2 # dq # # # ^ q 1 l | r | q 2 l & ^ q 1 m | O | q 2 m &

3 e 2ip( l 1 m )dp d l d m (6.A.4)

p 2 1 # dq # ^ q 1 l | r | q 2 l & ^ q 2 l | O | 2 1 l d l > tr( r O)

Therefore to the inner product in classical Liouville space there corresponds
the inner product in the quantum Liouville space. This fact completes the

analogy between classical and quantum spaces implemented by the Wigner

integral.

As an exercise, we can compute the classical distribution function corres-

ponding to the density matrices r 1(t) and r 2(t) of (5.3.26) and (5.3.27). Since

these equations will be used in Section 8, where we will use (6.5.2) to
compute the entropy neglecting O( l ), we will also do so in this exercise:

r w1(t) 5 p 2 1 # ^ q 1 l | #
`

0

( r 1 v e 2 1( v 1 2 v )t | 1 & ^ v |

1 h.c.) d v | q 2 l & e 2ip l d l (6.A.5)

where

^ q | v & 5
1

! 2 v
e 2 i = v q (6.A.6)

and where 2m 5 1, " 5 1, etc. After a simple calculation we obtain

r w1(q, p, t) ’ r 1,(2p 2 = v 1)2 e 4ip( = v
1
2 p)te2i( p 1 = v

1
)q 1 h.c. (6.A.7)

We can see that the main values of this distribution function are obtained

when p 5 ! v 1 since for other values there are rapid oscillations. Analogously,

r w2(t) 5 p 2 1 r 11 # ^ q 1 l | 1 & ^ 1 | q 2 l e 2ip l d l ’ d ( p 2 ! v 1)

(6.A.8)
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Therefore, in this case also, all the effect is concentrated around the energy

v 1, which, in the application of Section 8, will correspond to the characteristic

energy of nuclear reactions.

7. ENTROPY IN CURVED SPACE-TIME

We have mentioned cosmology in two contexts: (i) The cosmological

event horizon could be a way to explain a universal graininess of nature. (ii)

Extended dynamics time asymmetry is explained using a system with no

exterior, namely the universe. Furthermore, we must investigate a cosmologi-

cal arrow, so we cannot avoid cosmology in a complete discussion of this
subject. Many years ago Mach taught us that most basic physical facts can

only be explained if we consider the universe as a whole. For example, if

we wish to explain why a system is either an inertial one or not, we must

consider the whole universe; the system will be inertial if it is in uniform

translatory motion with respect to the matter of the whole universe. The

arrows of time are not exceptions, since they have a global nature. In fact,
sugar lumps disolve in coffee everywhere in the same time direction, here

and in the Andromeda nebula. We must explain why this is so, and we will

find the explanation only if we define the arrow of time in global cosmological

models. Thus, since cosmological models are presented in these spaces (Tol-

man, 1987), let us begin by studying the notion of entropy in curved
space-time.

7.1. Thermodynamics in Special Relativity

For phenomenological reasons we can assume that the laws of thermody-

namics are valid in the special-relativistic proper system of coordinates S 0.

From the relativity principle we then know that these laws are also valid in

every inertial system S in translatory uniform motion with respect to S 0,
provided that the quantities involved in these laws can be transformed conve-

niently. In other words, we would like to obtain the ª Lorentz transformationº

which makes invariant the following laws:

(i) The first law:

D E 5 D Q 2 D W (7.1.1)

where E is the energy, Q the heat, and W the work.
(ii) The second law:

D S $
D Q

T
(7.1.2)

where S is the entropy, T is the temperature, and the equality only holds for

reversible evolution.
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Let us then (a) suppose that the pressure is isotropic, i.e., it is equal in

all directions, and (b) for simplicity, temporarily use axes chosen in such a

way that the velocity u of the system S with respect to the system S 0 is
parallel to the x axis. Then, from ordinary special relativity, we know the

coordinate transformation equations for the following mechanical quantities:

(i) For the volume v

v 5 v0 ! 1 2 u 2 (7.1.3)

(ii) For the pressure p

p 5 p0 (7.1.4)

(iii) For the energy E

E 5
E0 1 p0v0

! 1 2 u 2
(7.1.5)

(iv) For the work W

dW 5 ! 1 2 u 2 dW0 1
u 2

! 1 2 u 2
d (E0 1 p0v0) (7.1.6)

where the quantities with subscript 0 refer to system S 0.

Then, for the covariance of the first law, (7.1.1), it is necessary and

sufficient that

Q 5 ! 1 2 u 2Q0 (7.1.7)

so we have obtained the transformation law for the heat. Let us now consider
a thermic system at S 0. We can accelerate this thermic system up to the

velocity u in a reversible and adiabatic way, so that the entropy of the system

is not modified. We obtain

S 5 S0 (7.1.8)

Finally, from equations (7.1.7) and (7.18) it is evident that the second law,
(7.1.2), will be covariant if

T 5 ! 1 2 u 2T0 (7.1.9)

So we have obtained the change of coordinate equation of all the basic

thermodynamic quantities. Let us now find the corresponding equations in

four-dimensional language. The first law is just a form of the statement of
conservation of energy, and therefore its four-dimensional version will be

- m T m n 5 0 (7.1.10)

where T m n is a convenient energy-momentum tensor ( m , n , . . . 5 0, 1, 2,
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3). To deduce the four-dimensional form of the second law, let us consider

a small volume of a thermodynamic fluid n and let us call f the entropy

density at the point where this element of volume is located in such a way
that f n is the entropy of the element. If d t is a small time period, the second

law reads

d

dt
( f v) d t $

d Q

T
(7.1.11)

or (i, j, . . . , 5 1, 2, 3)

1 d f
dt

v 1 f
dv

dt 2 d t 5 1 ui - i f 1
- f
- t

1 f - i ui 2 v d t $
d Q

T
(7.1.12)

where u i 5 dxi/dt. Combining terms, we have

1 - i 1 f dxi

dt 2 1
- f
- t 2 v d t $

d Q

T
(7.1.13)

but

ds

dt
5 ! 1 2 u 2 (7.1.14)

and from equations (7.1.3) and (7.1.8)

f 5
f 0

! 1 2 u 2
(7.1.15)

d Q

T
5

d Q0

T0

(7.1.16)

Thus, we obtain

- m 1 f 0
dx m

ds 2 d y $
d Q0

T0

(7.1.17)

where d y 5 y d t is the coordinate four-dimensional volume element, which

is equal to

d v0 5
v

! 1 2 u 2
! 1 2 u 2 d t 5 d v

[cf. (7.1.3), (7.1.14)], the proper four-dimensional volume element; so we

can use either one. Thus, if we define the flow of proper entropy or ª entropy

vectorº as
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S m 5 f 0
dx m

ds
(7.1.18)

then we obtain the four-dimensional version of the second law:

- m S m d v0 $
d Q0

T0

(7.1.19)

which is valid for all inertial systems, and we can write d y instead of d y 0.

7.2. Thermodynamics in General Relativity

Using the transcription rules to go from special relativity to general

relativity, namely

h m n ª g m n , - m ª ¹ m , d y ª ! 2 g d y (7.2.1)

the first law, (7.1.3), reads

¹ m T m n 5 0 (7.2.2)

or, introducing the tensor density T m n 5 ! 2 gT m n , we have the ordinary
divergence:

- m (Tm n 1 t m n ) 5 0 (7.2.3)

where t m n is the pseudo tensor density of potential energy-momentum. This

would be the general-relativistic covariant equation with the closest resem-

blance to (7.1.3). Using the transcription rules on the second law, (7.1.19),

we obtain

¹ m S m ! 2 g d y $
d Q0

T0

(7.2.4)

where, as all the factors are scalars, we have in fact obtained an equation
valid for all coordinate systems. Introducing the density Sm 5 ! 2 gS m , since

¹ m S m 5
1

! 2 g
- m ! 2 gS m 5

1

! 2 g
- m Sm

this last equation reads

- m Sm - y $
d Q0

T0

(7.2.5)

which, again, is the general-relativistic covariant equation with the closest

resemblance to the special-relativistic second law (7.1.19). Of course these

are not the unique covariant generalizations of the thermodynamic laws of
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general relativity, but they are the simplest and they lead to successful

applications.

7.3. Thermodynamics in Cosmology

Let us consider a Robertson±Walker metric:

ds2 5 dt2 1 a 2d s 2 (7.3.1)

where d s is the comoving arc length, and a the scale factor or the radius of

the universe. If the energy-momentum tensor corresponds to an isotropic

fluid with density r 00 and pressure p0, the first law reads

d

dt
( r 00a

3 d s ) 1 p0
d

dt
(a 3 d s ) 5 0 (7.3.2)

where d s is a comoving-coordinate, three-dimensional volume. If we consider

a comoving, thermic fluid, there will be no exchange of heat among the

comoving volumes, and u m 5 dx m /ds 5 (1, 0, 0, 0), so the second law, as

expressed by (7.2.5), reads

- m ( f 0u
m ! 2 g) $ 0 5

d

dt
( f 0a

3) $ 0 (7.3.3)

where f 0 is the proper entropy density and a the scale factor or radius of the

universe. If we multiply this equation by the constant-coordinate, comoving

volume d s , we obtain

d

dt
( f 0a

3 d s ) $ 0 (7.3.4)

This equation gives the recipe to compute the entropy in the comoving frame

of a Robertson±Walker metric: multiply the local proper entropy density by
the proper volume. This is, of course, a very reasonable and natural result,
perhaps so natural that it can simply be assumed from the outset, but now,

however, it has been rigorously proved. Let us check this result with just one

calculation: We know that, in a radiation-dominated universe, the temperature

obeys the law

T 5 T0
a0

a
(7.3.5)

which can be obtained by integrating equation (7.3.2) if we take p0 5 1±3 r 00

, T4, namely the radiation state equation, and that the entropy of a blackbody

radiation is given by the formula
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S 5
4

3
CST

3V (7.3.6)

where CS is the Stefan coefficient, T the temperature, and V the volume. If

we substitute these two last equations in (7.3.4), we see that the evolution
of a radiation-dominated universe is reversible, as should be expected. From

these considerations we can deduce that the only effect produced by the

expansion of the universe in isotropic models is that the temperature decreases.

This is the only effect we need to take into account from now on.

8. THE COSMOLOGICAL PROBLEM

8.1. The Problem of Time Asymmetry

The problem of the existence of the arrows of time or, in other words,

the time asymmetry of the universe may be stated, as explained in the

introduction, by asking the following questions:
(i) Why is there time asymmetry in the universe if all the relevant physical

laws are time-symmetric? In fact, the universe has several time asymmetries,

corresponding to the various arrows of time, thermodynamic, electromagnetic,

psychological, etc., whereas its main laws are time-symmetric. (ii) Why do
all the arrows of time point to the same direction?

In this section we would like to answer these questions, using our
mathematical framework for the problem. Let us first review the main equation

of Section 2. If the state of a physical system is described by r (classically

r being the distribution function or quantum mechanically the density matrix)

we will call r rev 5 _ r the state with reversed initial conditions [e.g., if K is

the Wigner operator of quantum mechanics, then _ r 5 K r K ² (Messiah,

1962; Castagnino et al., 1996; Castagnino and Gunzig, 1997)]. We will say
that the conditions at t 5 0 are time-symmetric if r rev(0) 5 _ r (0) 5 r (0)

and time-asymmetric otherwise. If r (t) is the state of the universe at time t,
then the universe would have a time-symmetric evolution with respect to t
5 0 if [cf. (2.2.21)]

_ r (t) 5 r ( 2 t) (8.1.1)

But the universe has, in fact, a time-asymmetric evolution, at least with
respect to some instant of time which we call t 5 0, such that

_ r (t) Þ r ( 2 t) (8.1.2)

If the evolution equations embodied in the Liouvillian universe, operator L,

are time-symmetric, namely [cf. (2.2.11)]



1412 Castagnino and Gunzig

_L_ ² 5 L (8.1.3)

then corresponding to time-symmetric conditions at t 5 0 there is a time-

symmetric evolution (8.1.1) and to time-asymmetric conditions there corres-
ponds a time-asymmetric evolution such as (8.1.2). In fact

r (t) 5 e 2 iLt r (0) (8.1.4)

and therefore, if the t 5 0 condition is time-symmetric, we have

_ r (t) 5 e i_L_ ² t_ r (0) 5 e iLt_ r (0) 5 r ( 2 t) (8.1.5)

since _ is an antilinear operator (namely _i 5 2 i). In the same way, the time-

asymmetric case can be demonstrated. Then the observed time asymmetry of

the universe evolution which obeys (8.1.2) can only be explained in two

alternative ways: (i) Equation (8.1.3) is actually not exact, and there is a

small, but relevant, time-asymmetric term in the Liouvillian (caused perhaps
by the weak interactions), or (ii) we have

_ r (0) Þ r (0) (8.1.6)

or in other words the initial state of the universe is not time-symmetric.

So, if we reject weak interactions, or any inventive manipulation of
the otherwise time-symmetric physical laws as the origin of time asymmetry,

then we must necessarily consider (8.1.6) as the only possible cause of

this phenomenon. Since, in principle, asymmetry is a more generic property

than symmetry (just as complex numbers are more frequent than real

ones), then (8.1.6) seems very natural and therefore this will be the idea

that we shall adopt in this section. If (8.1.6) is valid, then from (8.1.5)
we have

_ r (t) Þ e iLt r (0) 5 r ( 2 t) (8.1.7)

i.e., equation (8.1.2), is the equation we must prove. Finally, let us remark

that the same explanation can be used to explain the other two fundamental
asymmetries of nature, P and C. In fact, if

P r (0) Þ r (0), C r (0) Þ r (8.1.8)

we will have

P r (t) Þ r (t), C r (t) Þ r (t) (8.1.9)

even if

PLP ² 5 L, CLC ² 5 L (8.1.10)

That is, equation. ( , , ) can be demonstrated if we postulate the existence
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of a small fluctuation between the amounts of matter and antimatter at the

beginning of the universe.

8.2. Entropy, Fluctuations, and Irreversibility

Let us first study the thermodynamic arrow of time, and consider the

entropy S as the state function representing most eloquently the thermody-

namic state of the universe. (S can be computed using coarse-graining entropy,

or extended dynamics entropy.) We know that the vast majority of possible
states of the universe will be near the equilibrium state r

*
and will have the

equilibrium entropy S
*
. Nevertheless we know that fluctuations around the

equilibrium state, those less probable, unstable states near the equilibrium,

will spontaneously appear, and we also know that the entropy in these fluctua-

tion states will be smaller than S
*
. In any case, the steady equilibrium state

satisfies Liouville equation

L r
*

5 0 (8.2.1)

For simplicity let us consider that there is just one equilibrium state in the

universe, as is very likely since the universe appears to be chaotic and

therefore it is at least ergodic. Then from (8.1.3) we have

L_ r
*

5 _L_ ² _ r
*

5 0 (8.2.2)

So

_ r
*

5 r
*

(8.2.3)

Thus, if r (0) 5 r
*
, then we will have a time-symmetric evolution and no

thermodynamic arrow of time. (In fact, the universe will always remain in

state r
*
.) But in general, for an unstable nonequilibrium-fluctuation state r ,

we will have that _ r Þ r . Therefore it is enough to assume that the universe

began (at t 5 0) in one of these states, and we will have a time-asymmetric

evolution and a thermodynamic arrow of time. This is because the initial

entropy is S , S
*
, and therefore there will be growth of entropy toward both

the past and the future of t 5 0, since entropy will try to reach the equilibrium

entropy in both directions. [In the exceptional case that the initial nonequilib-

rium unstable state is such that _ r (0) 5 r (0) at t 5 0, it would be _ r Þ r
at a different time, close to t 5 0, which can, in addition, be taken to be the

origin of time in (8.1.7).] Then it is enough to suppose that the universe

began in a nonequilibrium unstable state to obtain the thermodynamic arrow
of time and the second law of thermodynamics, if we conventionally only

consider times t $ 0 (and conventionally name this period the ª futureº of t
5 0). This low-entropy, initial state of the universe could be considered to

be a fluctuation. In fact, irregular fluctuations of the equilibrium entropy are
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present in systems with a finite number of particles (Landau and Lifshitz,

1958), but they vanish if this number goes to infinity. Then, these fluctuations

cannot be considered if we work with a distribution r in Liouville space, as
we have done in this work, because these distributions are probabilities

computed assuming an infinite number of particles (or an infinite number of

copies of the system).

Fluctuations can be introduced in several ways: for example, (i) using

Boltzmann entropy as in Lebowitz (1994) i or (ii) working in a rigged space,

where the distribution corresponding to a finite number of particles, namely
r ’ s, built using a finite number of Dirac’ s deltas, can be considered, etc. We

will not discuss this subject further here. Regarding this solution to the

problem of the initial low-entropy state of the universe, it could be argued

that the initial fluctuation is very unlikely to occur Prigogine, 1980), since

the universe is very large, perhaps even infinite. Nevertheless, we will prove

in the next section, that this conjecture is unnecessary, since the initial instabil-
ity is naturally produced by the expansion of the universe, so that actually

no fluctuations are needed. This is why we do not discuss fluctuations in

this work.

For isolated subsystems within the Universe, time asymmetry can be

obtained in a similar way. In fact, we are used to imagining that these
subsystems (a Gibbs ink drop spreading in a glass of water, perfume

spreading in a room, and so on) begin in an unstable initial state with

low entropy (a concentrated ink drop, all the perfume inside the bottle,

etc.). However, these initial states are always produced, not by unlikely

fluctuations, but by external agencies (i.e., the ink or perfume factories).

They use energy to produce these concentrations which they obtain from
other subsystems in unstable initial states (chemically unstable coal or

nuclear-unstable isotopes, etc.) and which, in turn, obtain their energy,

via a chain of unstable states (such as those of the stars), ultimately from

the universe’ s initial, unstable state. Therefore, we conclude that all time-

asymmetric processes have a cosmological origin. The only difference is

that, in the case of a subsystem, we have a reason to consider only times
t $ t0, with the time t0 5 0 being the time of creation of the initial

unstable state of the subsystem, since time t , t0 corresponds to a period

before the creation of the unstable states by the external agency (the

concentration period of the ink drop or perfume), where the subsystem

is not isolated. The subsequent diffusion of the ink drop, perfume, etc.,
will produce the growth of thermodynamic entropy. The quantum equivalent
of this reasoning may be found in Castagnino et al. (1996), Castagnino

and Laura (1983), Laura and Castagnino (1997), Castagnino et al. (1997).

The creation of a low-entropy state is therefore produced either by an

initial fluctuation, as in the case of the universe (however, we will see
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in the next subsection that the initial fluctuation is not necessary, or by

an external agency, as in the case of subsystems within the universe.

Thus, neglecting fluctuations for a moment, we will consider the appearance
of a low-entropy state not produced by an external agency to be a

ª conspiracy.º We can then conclude that conspiracies do not exist in

nature. In fact, let us consider a system in a low-energy, unstable state

produced by external agencies (e.g., a shop with glasses, plus elephant).

Any process within the system will produce a growth of entropy (for

example, when the elephant enters the store and breaks all the glasses).
This is an irreversible process. In fact, its time-reversed process (the film

of the motion of the elephant played backward) is full of conspiracies

and therefore does not exist in nature. Irreversibility, therefore, can also

be explained in this way by our formalism.

8.3. The Problem of the Coordination of the Arrows of Time

Now we must solve the second problem which we stated by the following

question: (ii) Why do all the arrows of time point in the same direction? We
would also like to show that the initial fluctuation is not strictly necessary.

To solve these problems we shall consider the cosmological arrow of time,

that is, the growth of the radius or scale factor of the universe a, to be the

master arrow of time, defining the direction of all the others. First, we will

show that the thermodynamic arrow of time, that is, the tendency to obtain
a final equilibrium, points in the same direction as the master arrow. Let S*

be the equilibrium entropy and let S (t) be the actual entropy of the matter

and radiation within the universe at time t. The entropy gap

D S 5 S
*

2 S (t) (8.3.1)

would be minus the conditional entropy 2 Hc( r | r *), according to equation

(3.6.2), in full agreement with general relativity, if we take into account the

change of the universe’ s temperature as explained in Section 7, namely

D S 5 # X

r (x)log
r (x)

r
*
(x)

dx (8.3.2)

where r (t, x) and r *(x) are the corresponding local distribution functions,

and X is the phase space x P X a point of this space. The distribution functions

are normalized as

# X

r dx 5 1, # X

r * dx 5 1 (8.3.3)

Now we can take, as in equation (5.3.24),
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r (t) 5 r
*

1 ( r 1 1 r 2e
2 - t/2)e 2 - t/2 5 r

*
1 r D e 2 - t/2 (8.3.4)

where the second term on the rhs is a sort of correction around the equilibrium

term, with a damping factor which has a characteristic time ’ g 2 1. We will

only consider the universe’ s evolution after the decoupling time, when the
universe is matter-dominated, and g 2 1 5 tNR is the characteristic time of

nuclear reactions, which cause the matter within the stars to evolve toward

thermal equilibrium with the cosmic microwave background. Equation (8.3.4)

can be considered merely as a phenomenological equation, which can be

obtained if we use coarse-graining techniques and we neglect the Zeno and

Khalfin effects; however, we know that there is a rigorous way to eliminate
these effects, by using the rigged Hilbert space formalism (extended dynamics

techniques) as in (5.3.24). r D 5 r 1 1 r 2e
2 - t/2 is normalized as

e 2 - t/2 # X

r D dx 5 # X

r dx 2 # X

r
*

dx 5 0 (8.3.5)

This normalization is also a consequence of equation (5.3.148). We will take

| r D | , , r
*
, or t . . g 2 1; in other words, the fluctuation is small compared

to the equilibrium distribution function. Then, on expanding the logarithm

and neglecting unimportant terms, as in (6.5.2), the entropy gap D S reads

D S ’ e 2 g t # X

r 2
D

r *
dx . 0 (8.3.6)

Thus, when g 5 0, the growth of entropy variation disappears. To compute

the time derivative of D S, let us use the model of (5.3.31) and (5.4.17),
described at the end of Section 5.3. Then the last equation reads

D S ’ e 2 g t # X

T 3/2

Z
e v /T r 2

D dx (8.3.7)

where we have explicitly shown the time variation in the first exponential

function and T (t). The rest of the quantities are time constant, since we can

neglect the second time-varying term of r D with respect to the first, time-

constant one (otherwise we could keep both terms with a small modification

to the formulas). r 1 and r 2 are independent of the temperature because they
are related only to the nuclear reaction processes. From Castagnino and

Laura (1997) [or from (6.A.7) and (6.A.8)] we can introduce a reasonable

simplification by supposing that the only important values of the last integral

are those around v 1, the characteristic energy of the nuclear processes. Then

D S 5 Ce 2 g tT 3/2e v 1/T (8.3.7)

where C is a time-independent constant. The temperature evolution will be
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dominated by the radiation within the universe and will therefore follow

equation (7.3.5) so that

D S 5 C8e 2 g ta 2 3/2 e v a/T0a0 (8.3.8)

where C 8 is another time-independent constant. Now we can compute the

time derivative, which reads

D SÇ (t) 5 1 2 g 2
3aÇ

2a
1

v 1aÇ

T0a0 2 D S (8.3.9)

where aÇ /a 5 H (t) ’ t 2 1
U is the Hubble coefficient. Since we are in the matter-

dominated period, we have

a 5 a0 1 t

t0 2
2/3

(8.3.10)

and thus

D SÇ 5 1 2 g 2 t 2 1 1
2 v 1

3T0t0 1 t0t 2
1/2

2 D S (8.3.11)

Equation (8.3.8) shows two antagonistic effects (Fig. 6). The universe’ s

gravitational field, embodied in the positive coefficient (and in the term t 2 1),

is the external agency which mostly tries to take the system away from

equilibrium, whereas the nuclear reaction, embodied in g , tries to convey the
system toward equilibrium (but the gravitational term t 2 1 tries to establish

equilibrium). These two effects are equal at critical times tcr such that

Fig. 6. Plot of D S showing the minimum and the maximum.
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g t0 1 1 t0

tcr 2 5
2 v 1

3T0 1 t0

tcr 2
1/3

(8.3.12)

Usually this equation will have two pnoindeno roots tcr1 , tcr2 (Fig. 7). It is

premature to give physical numerical values to the parameters of the model.

In fact, this model is extremely simplified, since it is based on a homogeneous

space geometry, while the decaying processes are produced within the stars.

So what we really need is an inhomogeneous geometry to properly describe
the phenomenon. However, with reasonable numerical values (essentially

taking v 1 . . T0, g 2 1 ’ t0), we can obtain the following conclusions;

(a) The first root is in the region t , , t0, so that the first term on the

lhs of the last equation can be neglected to obtain tcr1 5 t0(3T0 /2 v 1)
3/2 (this

quantity, with minus sign, gives the third negative root). For these times the

entropy gap has a minimum. (b) The second root is in the region t . . t0,
so that the second term on the lhs can be neglected to obtain tcr2 5 (2 v 1tNR/

3T0t0)
3 t0. For these times the entropy gap has a maximum.

Then we can conclude the following:

(i) If t , tcr1, then the second term on the lhs of equation (8.3.12)

dominates D SÇ , 0, and there is a big value for the entropy gap which is

rapidly thermalized.
(ii) If tcr1 , t , tcr2, then D SÇ . 0, the rhs of (8.3.12) dominates, and

there will be a growth of the entropy gap, produced by the universe’ s expan-

sion, which drives the universe away from equilibrium. There will be a

growth of complexity during this period, allowing particles, atoms, molecules,

galaxies, stars, planets, and living beings to appear.

(iii) On the contrary, if t . tcr2, then D SÇ , 0, the first term on the l.h.s.
of (8.3.12) dominates, the entropy gap will diminish, and the universe goes

toward its final equilibrium state, driven by the nuclear reaction processes,

Fig. 7. Plot of D SÇ showing the two roots.
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in agreement with (Davies, 1994). All structure within the universe decays

and disappears. Therefore

lim
tª̀

D S 5 0 (8.3.13)

Numerical estimates show that tcr1 , , t0 , , tcr2 in such a way that the

first period can be, in some sense, neglected since this is the period is before

the decoupling time. [Also, tcr2 . . t0 as in (Reeves, 1993)]

(iv) Equation (8.3.8) shows how the universe expansion creates, in a
continuous manner, the universe’ s instability and complexity. This fact makes

the initial fluctuation hypothesis unnecessary. The instability is created toward

the future, defined as the direction of the universe’ s expansion. Equation

(8.3.8) also shows how the local nuclear reactions try to restore equilibrium,

in the same time direction. The thermodynamic arrow of time is the local

tendency to thermodynamic equilibrium (and not the total entropy gap
growth). Therefore the thermodynamic arrow coincides with the cosmologi-

cal arrow.

(v) All this reasoning is also valid before the recombination time. In

that case we would use a much bigger g , because in that period we would

have to consider reactions with much smaller characteristic times, smaller in
fact than the recombination time. Since the period t , tcr1 probably lies in

this period, then perhaps the universe reaches also a thermodynamic equilib-

rium, and we can use the arguments of Zeh (1989), to show that the electro-

magnetic arrow of time coincides with the cosmological one. Also, the

damping factor e 2 g t, can be obtained if we consider a pole in the lower half-

plane of the unphysical sheet of the complex energy plane; thus we must use
the upper rim of the positive real axis cut and retarded solutions therefore

as in electromagnetism (Zadella and Zudin, 1996).

(vi) Finally, we ourselves are merely a subsystem with unstable initial

state, produced by external agencies, just as the ink drop or the bottle of

perfume, and therefore our thermodynamic arrow, which can be identified

with our psychological arrow, is aligned with the cosmological one. Therefore
all arrows of time point in the same direction (see also Aquilano and Castag-

nino, 1996a.

(vii) Hence we have given, in a mathematical formalism, answers to

the two main questions concerning the universe’ s time asymmetry. We believe

that the solution presented is quite satisfactory, and that all that remains is

to study many more physical examples using the extended dynamics method,
and to add some mathematical refinement (such as that of Castagnino and

Gunzig, 1997). Once such examples have been studied and these refinements

made, we will have a definitive and rigorous answer to these long-standing

fundamental questions.
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9. CONCLUSIONS

As a result of all this explanation and discussion, we believe that we

can draw the following conclusions:

(i) There is no compelling, local-physical motivation to prefer one choice

of technique over the other. Therefore, it is not easy to see how to find a

local cross-experiment to settle the matter. Probably this cross-experiment
does not even exist, so that both techniques really are physically equivalent.

(ii) Coarse-graining is more ª physical,º since it works directly in the

usual Hilbert space. The price to pay is the introduction of an object which

is actually alien to the theory, the projector. This projector is essentially

arbitrary, so that coarse graining will not have a deep physical meaning unless

or until a natural graininess is found.
(iii) Extended dynamics is more ª mathematicalº in that it works in

rigged Hilbert space. After paying this price, however, we are not forced to

introduce any object alien to the theory. In this sense, extended dynamics is

purer and cannot really be distinguished from no-graining. Extended dynamics

therefore appears to be conceptually superior even if, from the operational

point of view, coarse-graining might be considered more convenient. In any
case, extended dynamics also has its ambiguities, e.g., the choice of the test

function space, even if it seems more probable that we would find a canonical

choice of this space in the future than a canonical choice of the coarse-

graining projector.

(iv) For conceptually difficult aspects of physics, such as cosmology or

quantum measurement theory, it is advisable to use extended dynamics, since
it is conceptually superior to coarse-graining. Perhaps one should still hold

out hope for a global cross-experiment which may ultimately base the appro-

priateness of one technique or the other on sound cosmological reasoning.

ACKNOWLEDGMENTS

This work was partially supported by grants CI1*-CT94-0004 of the

European Community, PID-0150 of CONICET (National Research Council

of Argentina), EX-198 of Buenos Aires University, and by the British Council

and the OLLAM and Antorchas Foundations.

REFERENCES

Anosov, D. V. (1963). Soviet Mathematics-Doklady, 4, 1153.

Antoniou, I., and Prigogine, I. (1993). Physica A, 192 , 443.

Antoniou, I., and Tasaki, S. (1991). Physica A , 190 , 303.

Antoniou, I., and Tasaki, S. (1993a). International Journal of Quantum Chemistry, 46, 427.



Dynamics, Thermodynamics, and Time Asymmetry 1421

Antoniou, I., and Tasaki, S. (1993b). ULB preprint.

Antoniou, I., Laura, R., Tasaki, S., and Suchanecki, N. (1995). ULB preprint.

Aquilano, R., and Castagnino, M. (1996a). Modern Physics Letters A, 11, 755.

Aquilano, R., and Castagnino, M. (1996b). Astrophysics and Space Science , 238 , 159.

Arnold, V. I., and Avez, A. (1968). Ergodic Problems of Classical Mechanics , Benjamin,

New York.

Balazs, N., and Voros, A. (1990). Annals of Physic, 199 , 123.

Balescu, R. (1975). Equilibrium and Non-Equilibrium Statistical Mechanics , Wiley, New York.

Ballentine, L. E. (1990). Quantum Mechanics , Prentice-Hall, Englewood Cliffs, New Jersey.

Bohm, A. (1979). Quantum Mechanics: Foundations and Applications, Springer-Verlag, Berlin.

Bohm, A., and Gadella, M. (1989). Dirac Kets, Gamow Vectors, and Gel’ fand Triplets, Springer-

Verlag, Berlin.

Caldeira, A., and Leggett, A. (1995). Physical Review D, 31, 1059.

Castagnino, M., and Gunzig, E. (1997). A landscape in time-asymmetry, International Journal

of Theoretical Physics, in press.

Castagnino, M., and Laura, R. (1983). The cosmological essence of time asymmetry, in Proceed-

ings SILARG VIII, W. Rodrigues, ed., World Scientific, Singapore.

Castagnino, M., and Laura, R. (1997). A minimal irreversible quantum mechanics, Physical

Review A, in press.

Castagnino, M., Gaioli, F., and Gunzig, E. (1996). Foundations of Cosmic Physics, 16, 221.

Castagnino, M., Gadella, M., Gaioli, F., and Laura, R. (1997). Gamov vectors and time asymme-

try, Fortschritte der Physik, submitted.

Castagnino, M., Gunzig, E., and Lombardo, F. (1995). General Relativity and Gravitation ,

27, 257.

Davies, P. C. (1994). Stirring up trouble, in Physical Origin of Time Asymmetry, J. Halliwell

et al., eds., Cambridge University Press, Cambridge.

Gadella, M., and Rubin, G. E. (1996). International Journal of Quantum Chemistry, 58, 441.

Gel’ fand, I., and Shilov, G. (1968). Generalized Functions , Academic Press, New York.

Halmos, P. R. (1956). Lectures on Ergodic Theory, Chelsea, New York.

Hillery, M., O’ Conell, R. F., Scully, M. D., and Wigner, E. P. (1984). Physics Reports, 106 , xxx.

Hu, B. L., Paz, J. P., and Zhang, Y. (1992a). Physical Review D, 45, 2843.

Hu, B. L., Paz, J. P., and Zhang, Y. (199b7). Quantum origin of noise on fluctuation in

cosmology, in Proceedings Conference on the Origin of Structure in the Universe, World

Scientific, Singapore.

Hu, B. L., Paz, J. P., and Zhang, Y. (1993). Physical Review D, 47, 1776.

Landau, L. D., and Lifshitz, E. M. (1958). Statistical Physics, Pergamon Press, Oxford.

Lasota, A., and Mackey, M. C. (1985). Probabilistic Properties of Deterministic Systems,

Cambridge University Press, Cambridge.

Laura, R., and Castagnino, M. (1997). Functional approach for quantum systems with continuous

spectrum, Physical Review E, in press.

Lebowitz, J. L (1994). Time’ s arrow and Boltzmann’ s entropy, in Physical Origin of Time

Asymmetry, J. Halliwell et al., eds., Cambridge University Press, Cambridge.

Mackey, M. C. (1989). Reviews of Modern Physics, 61, 981.

Messiah, A. (1962). Quantum Mechanics , North-Holland, Amsterdam.

Misra, B., Prigogine, I., and Courbage, M. (1979). Physica A, 98, 1.

Ordon
Ä
ez, A. (1997). Rigged Hilbert spaces associated with Misra±Prigogine±Courbage theory

of irreversibility, Physica A, in press.

Prigogine, I. (1980). From Being to Becoming: Time and Complexity in Physical Sciences,

Freeman, San Francisco.



1422 Castagnino and Gunzig

Prigogine, I. (1993). Time, dynamics, and chaos, in Nobel Conference XXVI, Chaos: The New

Science , John Holte, ed., Gustavus Adolphus College, St. Peter, Minnesota.

Prigogine, I., and Petrosky, T. (1993). Physics Letters A, 182 , 5.

Prigogine, I., George, C., Henin, F., and Rosenfeld, L. (1980). Chemica Scripta, 4, 5.

Reeves, H. (1993). The growth of complexity in expanding universes, in The Anthropic Principle,

Proceedings Second Venice Conference on Cosmology, F. Bertolo and U. Cino, eds.,

Cambridge University Press, Cambridge.

Rochlin, V. A. (1969). American Mathematical Society Translations (2) , 39, 1.

Roman, P. (1965). Advanced Quantum Theory, Addison-Wesley, Reading, Massachusetts.

Sachs, R. G. (1987). The Physics of Time Reversal , University of Chicago Press, Chicago.

Schild, P. (1979). The Theory of Bernoulli Shift, University of Chicago Press, Chicago.

Sudarshan, E. C. G., Chiu, C. B., and Gorini, V. (1978). Physical Review D, 18, 2914.

Tabor, G. (1980). Chaos and Integrability in Non-linear Dynamics , Wiley, New York.

Tolman, R. C. (1987). Relativity, Thermodynamics, and Cosmology, Dover, New York.

Voigt, J. (1981). Communications in Mathematical Physics, 81, 31.

Walter, P. (1982). An Introduction to Ergodic Theory, Springer-Verlag, Berlin.

Zeh, D. (1989). The Physical Bases of the Direction of Time, Springer-Verlag, Berlin.

Zwanzig, R. W. (1960). Chemical Physics, 33, 1388.

Zwanzig, R. W. (1961). Statistical mechanics of irreversibility, in Lectures in Theoretical

Physics III, W. E. Britten et al., eds., Interscience, New York.


